
Toward Failure Recoverable And Secured

Persistent Memory Systems

Sihang Liu

University of Virginia

(Current)

University of Waterloo

(Joining in 2023 as an Assistant Professor)

June 9, 2022

IEEE Data & Storage Symposium 2022

Demand for Memory and Storage

2

56%
44% Memory and StorageComputation

Execution time breakdown in Google cloud workloads
Source: Kanev et al. ISCA’15.

Computation

Memory and storage takes the majority of time

56%
44%

Data Analytics Databases In-memory Cache

Memory and Storage Technologies

3

HDD/SSD

Volatile

Low-capacity

High-cost

Fast

Persistent

High-capacity

Low-cost

Slow

DRAM

Memory

Storage
Persistent Memory

Persistent memory unifies memory and storage

Take advantages from both tiers

Intel Optane Persistent Memory

System Stack for Persistent Memory

4

Applications

OS

Processor

DRAM

SSD

Applications

Processor

File system
indirections

I/O

Direct Access

Load/Store

Conventional Systems

Load/Store

Direct Access

Enable better performance using

direct management of persistent data

OS

Persistent Memory

Unify memory and storage

Persistent Memory Systems

5

Persistent Memory (PM)

To fully leverage the benefits

My research:

Seamlessly integrate persistent memory by redesigning

both the software and hardware

System stack redesign

System Stack Redesign for Persistent Memory

PM Applications

PM Library

Processor
PM HW Support

Persistent Memory

Software

Hardware

Program Correctness

6

[ASPLOS’21, ASPLOS’20,

ASPLOS’19] Persistent Memory System

Data

After Failure

DataData

System
Failure

Resume Execution

Fix Crashed
Data

Ensure correct failure-recovery for
persistent memory programs

PM Applications

PM Library

Processor
PM HW Support

Persistent Memory

System Stack for
Persistent Memory

Efficiency and Security

7

[In-submission, PACT’21,

ISCA’19, HPCA’18]

Persistent Memory

Data

Data is persistent

Attackers may have

physical access

Secured High-performance

At the same time …

Design efficient and secured
persistent memory hardware

PM Applications

PM Library

Processor
PM HW Support

Persistent Memory

System Stack for
Persistent Memory

8

Hardware System for Persistent Memory

Software Support for Persistent Memory

Testing frameworks for
failure-recovery issues

PMTest
[ASPLOS’19]

XFDetector
[ASPLOS’20]

A test case generator for
better testing efficiency

PMFuzz
[ASPLOS’21]

Efficient and secured
persistent memory hardware

Software-hardware co-designs

[HPCA’18, ISCA’19, PACT’21]

PM Applications

PM Library

Processor
PM HW Support

Persistent Memory

System Stack for
Persistent Memory

Outline

New security
vulnerabilities in

Intel’s persistent memory

[In-submission]

9

Hardware System for Persistent Memory

Software Support for Persistent Memory

Testing frameworks for
failure-recovery issues

PMTest
[ASPLOS’19]

XFDetector
[ASPLOS’20]

A test case generator for
better testing efficiency

PMFuzz
[ASPLOS’21]

PM Applications

PM Library

Processor
PM HW Support

Persistent Memory

System Stack for
Persistent Memory

Outline

Efficient and secured
persistent memory hardware

Software-hardware co-designs

[HPCA’18, ISCA’19, PACT’21]

New security
vulnerabilities in

Intel’s persistent memory

[In-submission]

PMTest:
A Fast and Flexible Testing Framework for

Persistent Memory Programs

10

Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Khan

The 2019 International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS)

NVMW Memorable Paper Award—Finalist

Software for Persistent Memory Systems

Faster
Direct Access

11
Faster, direct access benefits storage applications

File
System

Storage Applications

Through
Indirections

Slower Faster

What if the system fails?
Conventional System Persistent Memory System

Software for Persistent Memory Systems

Program customizes

recovery

File system handles

recovery

12
The burden of failure-recovery lies on the programmers

File
System

The ability to recover:
Crash consistency guarantees

Conventional System Persistent Memory System

Programming for Persistent Memory Systems

Core

Cache
Volatile

Persistent

CLWB

• Support for crash consistency has two fundamental guarantees
• Persistence: writes become persistent on demand

13

Persistent Memory

- CLWB: cache line write back

x86 instructions:

Programming for Persistent Memory Systems

• Support for crash consistency has two fundamental guarantees
• Persistence: writes become persistent on demand

• Ordering: one write becomes persistent before another

Volatile

CLWB
SFENCE

persist_barrier

14

Core

Cache

Persistent

Persistent Memory

- CLWB: cache line write back

- SFENCE: store fence for ordering

x86 instructions:

Example of Persistent Memory Programming

Head

1 void listAppend(item_t new_val) {

2 node_t* new_node = new node_t(new_val);

3 new_node->next = head;

4 head = new_node;

5 persist_barrier();

6 }

In cache

new_node is lost after failure

2 node_t* new_node = new node_t(new_val);

3 new_node->next = head;

4 head = new_node;

Create new_node

Update new_node

Update head pointer

Unrecoverable

Writeback updates5 persist_barrier();

Writes can reorder

15

head
next

next

head

Core

1 void listAppend(item_t new_val) {

2 node_t* new_node = new node_t(new_val);

3 new_node->next = head;

Example of Persistent Memory Programming

persist_barrier();4 head = new_node;

5 persist_barrier();

6 }

Enforce writeback before changing head

Recoverable

Head

Persistent

16

Ensuring crash consistency is hard!

Programming for Persistent Memory Is Hard!

Simplify

Low-level Primitives High-level Libraries

(e.g., Intel’s PMDK library)

System Experts

17

Libraries are developed for persistent memory to

make programming easier

Directly using low-level primitives to implement

crash-consistent programs is not trivial

E.g., Software developed by Lenovo has misuse
of low-level primitives, e.g., persist_barrier()

Application Developers

Application Developers

Programming for Persistent Memory Is Hard!

Directly using low-level primitives to implement

crash-consistent programs is not trivial

E.g., Software developed by Lenovo has misuse
of low-level primitives, e.g., persist_barrier()

System Experts

Using high-level libraries can also lead to bugs

E.g., Software developed by Intel has misuse

of their library functions

18
We need to test persistent memory programs

Challenge I: Expose Crash Consistency Issues

Appears to work if no failure Failure to recover in case of failure

Crash consistency bugs

19

CLWB
SFENCE

Core

Cache Not exposed to the software

How can we expose crash consistency bugs?

20

Challenge II: Various Persistent Memory Systems

PM Applications

Processor
PM HW Support

Persistent Memory

PM Library

Custom
Programs

ARM

Persistent
Libraries

Academic
Proposals

How can we cover various software and hardware?

x86

Hardware

Software

21

Similarities in Software/Hardware Systems

WRITE,
CLWB, SFENCE

WRITE,
DC CVAP, DSB

Intel’s Library

Custom Program Custom Program

Operations for crash consistency are similar:
guarantees of ordering and persistence

Expose persistence and ordering

Expose Persistence and Ordering

Construct persistence intervals from instruction trace
A time interval in which a write may become persistent

Deduce persistence and ordering

A

B

Timeline

CLWB A

SFENCE

WRITE B
CLWB B

SFENCE

22

WRITE A

Trace

A becomes

persistent before B

Expose Persistence and Ordering

23

A

B

CLWB A

SFENCE

WRITE B

CLWB B

SFENCE

WRITE A

Trace

A may NOT

become persistent

before B

Construct persistence intervals from instruction trace
A time interval in which a write may become persistent

Deduce persistence and ordering

Result: Incorrect
Timeline

Specification:
A becomes persistent before B

Interleaving

Our Work: PMTest

During runtime …

Workflow:
• Tracks accesses to persistent memory
• Deduce the ordering and persistence
• Check against specifications
• Detect crash consistency issues

WRITE A
FLUSH A
WRITE B
FLUSH B
FENCE
...

Construct persistence intervals

Specification

Correct

Incorrect

24

Towards Higher Efficiency and Coverage

25
[2] PMFuzz: Test Case Generation for Persistent Memory Programs.

Sihang Liu*, Suyash Mahar*, Baishakhi Ray, and Samira Khan. ASPLOS. 2021.

[1] Cross-Failure Bug Detection in Persistent Memory Programs.

Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch, Aasheesh Kolli, and Samira Khan. ASPLOS. 2020.

PMFuzz [2]

XFDetector [1]

PMTest

Ensure correct

ordering and persistence

End-to-end correctness,

including recovery

Generate high-coverage

test casesTest Cases

These tools have detected 18 bugs in existing software

produced by the industry for persistent memory systems

26

Hardware System for Persistent Memory

Software Support for Persistent Memory

Testing frameworks for
failure-recovery issues

PMTest
[ASPLOS’19]

XFDetector
[ASPLOS’20]

A test case generator for
better testing efficiency

PMFuzz
[ASPLOS’21]

PM Applications

PM Library

Processor
PM HW Support

Persistent Memory

System Stack for
Persistent Memory

Outline

Efficient and secured
persistent memory hardware

Software-hardware co-designs

[HPCA’18, ISCA’19, PACT’21]

New security
vulnerabilities in

Intel’s persistent memory

[In-submission]

Janus:
Optimizing Memory and Storage Support for

Non-Volatile Memory Systems

27

Sihang Liu, Korakit Seemakhupt, Gennady Pekhimenko,

Aasheesh Kolli, and Samira Khan

The 2019 International Symposium on Computer Architecture (ISCA)

MICRO Top Picks—Honorable Mention

Persistent Memory Hardware

Persistent memory hardware comes different types of supports

Security

Bandwidth

Lifetime

Prevent attackers from stealing or tampering data

Encryption, integrity verification, etc.

Improve bandwidth

Deduplication, compression, etc.

Extend lifetime

Wear-leveling, error correction, etc.

28
Backend operations in persistent memory hardware

Increased Write Latency

29

Core

Cache

Persistent Memory Write
Timeline

Cache
Writeback

Memory
Access

Backend
Operations

> 100 ns

Backend operations increase write latency

Example: Steps in listAppend()

persist_barrier

Execution
Timeline

30

Block the execution

Why is write latency critical?

Headpersist_barrier

Cache Writeback

Create
Node

Update
Head

Writeback

Latency

Crash consistency mechanisms put
write latency on the critical path

Example: Steps in listAppend()

Execution
Timeline

31

Overhead of Backend Operations

Create
Node

Update
Head

Backend operations increase the execution time

Create
Node

Update
Head

Backend
Operations

Increased
latency

Counter-mode
Encryption

DeduplicationIntegrity
Verification

Each backend operation seems indivisible

Integration leads to serialized operations

32

Challenges in Optimizing Backend Operations

However, it is possible to decompose them into sub-operations

Decompose

Generate counter

Encrypt counter

Data Encrypted counter

Counter-mode
Encryption

Generate MAC
(for integrity verification)

33

Decomposition of Backend Operations

Decomposition of Backend Operations

Deduplication
Integrity

Verification
Counter-mode

Encryption

Decomposing the example operations:

34
Decomposing backend operations enables more optimizations

Optimization: Parallelization

There are two types of dependencies:

Deduplication
Integrity

Verification
Counter-mode

Encryption

Inter-operation dependencyIntra-operation dependency

35
2. Dependency across different operations1. Dependency within each operation

Optimization: Parallelization

There are two types of dependencies:

Inter-operation dependencyIntra-operation dependency

Parallelizable

36
Deduplication

Integrity
Verification

Counter-mode
EncryptionSub-operations without dependency can execute in parallel

Optimization: Parallelization

There are two types of dependencies:

Inter-operation dependencyIntra-operation dependency

Parallelizable

37
Deduplication

Integrity
Verification

Counter-mode
EncryptionSub-operations without dependency can execute in parallel

Optimization: Pre-execution

Address DataA write consists of:

38

External dependency

Deduplication
Integrity

Verification
Counter-mode

Encryption
Sub-operations can pre-execute

as soon as their data/address dependency is resolved

Optimization: Pre-execution

Address DataA write consists of: Address-dependent

39
Deduplication

Integrity
Verification

Counter-mode
Encryption

Address-dependent sub-operations can pre-execute
as soon as the address of the write is available

Optimization: Pre-execution

Address DataA write consists of: Data-dependent

40
Deduplication

Integrity
Verification

Counter-mode
Encryption

Data-dependent sub-operations can pre-execute
as soon as the data of the write is available

Optimization: Pre-execution

Address DataA write consists of: Both-dependent

41
Deduplication

Integrity
Verification

Counter-mode
Encryption

Both-dependent sub-operations can pre-execute as soon as
the data and address of the write are available

Janus is a Roman god with two faces:

42

When dependent data and

address become available

FuturePast

Pre-execute operations with

dependency resolved

One looks into the past and another into the future

Our Work: Janus

Janus:

Serialized

Create
Node

Update
Head

Parallelized

• Parallelization

Parallelization reduces the latency of each operation

Create
Node

Update
Head

Performance Improvement

Execution
Timeline

Backend operations

Original writeback latency

Janus:

Serialized

Create
Node

Update
Head

Parallelized

• Parallelization

Pre-execution moves the latency off the critical path

Create
Node

Update
Head

Backend operations

Original writeback latencyPerformance Improvement

Execution
Timeline

Pre-executed

• Pre-execution

Create
Node

Update
Head

Create
Node

Update
Head

45

Software-Hardware Co-design

Automated software instrumentation for pre-execution

Compiler Pass Pre-execution Hint
Instrumentation

Find pre-execution opportunities
based on address/data dependencies

Dependency
Analysis

Instrumented
Program

Original
Program

46

Memory
Controller

Cores

CPU

Software-Hardware Co-design

Instrumented
Program

Janus
Hardware

Persistent Memory

Janus hardware executes the instrumented program

Perform pre-execution on
parallelized backend operations

Evaluation Methodology

• Platform - Gem5 Simulation

• Design points
• Baseline: all backend operations are serialized

• Janus: pre-execute parallelized backend operations

47

Processor Out-of-Order, 4GHz

L1 D/I, L2 cache 64/32KB, 2MB per core (shared)

Backend memory operation cache 512KB per core for each operation (shared)

Backend memory operation units 4 units per core

Evaluation Methodology

• Storage-class workloads

48

Array Swap Randomly swap two locations in an array

Queue Randomly push/pop items to a queue

Hash Table Randomly insert key-values to a hash table

B-Tree Randomly insert key-values to a b-tree

RB-Tree Randomly insert key-values to a rb-tree

TATP Add items to a telecommunication table with the TATP input generator

TPCC Add items to a hash table with the TPCC input generator

Performance

49

1

2

3

4

5

6

S
p

e
e

d
u

p
 o

v
e

r
S

e
ri
a

liz
e

d
 B

a
s
e

lin
e

Janus provides 2X speedup on average

2X Speedup

50

Hardware System for Persistent Memory

Software Support for Persistent Memory

Testing frameworks for
failure-recovery issues

PMTest
[ASPLOS’19]

XFDetector
[ASPLOS’20]

A test case generator for
better testing efficiency

PMFuzz
[ASPLOS’21]

Efficient and secured
persistent memory hardware

Software-hardware co-designs

[HPCA’18, ISCA’19, PACT’21]

New security
vulnerabilities in

Intel’s persistent memory

[In-submission]

PM Applications

PM Library

Processor
PM HW Support

Persistent Memory

System Stack for
Persistent Memory

Summary

Future Directions

51

• Adaption of PM into larger scale systems
• How can datacenter-scale workloads better utilize persistent memory?

• How can we redesign the networking system to better leverage the
lower latency of PM?

• Integration of computation logic into PM
• What computation logic can we place on PM to accelerate memory-

intensive workloads?

• More security challenges of PM systems
• How can we design software systems for PM that ensures existing

security guarantees?

Toward Failure Recoverable And Secured

Persistent Memory Systems

Sihang Liu

University of Virginia

(Current)

University of Waterloo

(Joining in 2023 as an Assistant Professor)

June 9, 2022

IEEE Data & Storage Symposium 2022

