
Toward Failure Recoverable And Secured 

Persistent Memory Systems

Sihang Liu

University of Virginia 

(Current)

University of Waterloo 

(Joining in 2023 as an Assistant Professor)

June 9, 2022

IEEE Data & Storage Symposium 2022



Demand for Memory and Storage
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56%
44% Memory and StorageComputation

Execution time breakdown in Google cloud workloads
Source: Kanev et al. ISCA’15.

Computation

Memory and storage takes the majority of time

56%
44%

Data Analytics Databases In-memory Cache



Memory and Storage Technologies
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HDD/SSD

Volatile

Low-capacity

High-cost

Fast

Persistent

High-capacity

Low-cost

Slow

DRAM

Memory

Storage
Persistent Memory

Persistent memory unifies memory and storage

Take advantages from both tiers

Intel Optane Persistent Memory



System Stack for Persistent Memory

4

Applications

OS

Processor

DRAM

SSD

Applications

Processor

File system 
indirections

I/O

Direct Access

Load/Store

Conventional Systems

Load/Store

Direct Access

Enable better performance using 

direct management of persistent data

OS

Persistent Memory

Unify memory and storage

Persistent Memory Systems
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Persistent Memory (PM)

To fully leverage the benefits

My research:

Seamlessly integrate persistent memory by redesigning 

both the software and hardware

System stack redesign

System Stack Redesign for Persistent Memory 

PM Applications

PM Library

Processor
PM HW Support

Persistent Memory

Software

Hardware



Program Correctness
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[ASPLOS’21, ASPLOS’20, 

ASPLOS’19] Persistent Memory System

Data

After Failure

DataData

System 
Failure

Resume Execution

Fix Crashed 
Data

Ensure correct failure-recovery for 
persistent memory programs

PM Applications

PM Library

Processor
PM HW Support

Persistent Memory

System Stack for 
Persistent Memory 



Efficiency and Security
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[In-submission, PACT’21, 

ISCA’19, HPCA’18]

Persistent Memory

Data

Data is persistent

Attackers may have 

physical access

Secured High-performance

At the same time …

Design efficient and secured
persistent memory hardware

PM Applications

PM Library

Processor
PM HW Support

Persistent Memory

System Stack for 
Persistent Memory 
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Hardware System for Persistent Memory

Software Support for Persistent Memory

Testing frameworks for
failure-recovery issues

PMTest
[ASPLOS’19]

XFDetector
[ASPLOS’20]

A test case generator for 
better testing efficiency

PMFuzz
[ASPLOS’21]

Efficient and secured
persistent memory hardware 

Software-hardware co-designs

[HPCA’18, ISCA’19, PACT’21]

PM Applications

PM Library

Processor
PM HW Support

Persistent Memory

System Stack for 
Persistent Memory 

Outline

New security 
vulnerabilities in 

Intel’s persistent memory

[In-submission]
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Hardware System for Persistent Memory

Software Support for Persistent Memory

Testing frameworks for
failure-recovery issues

PMTest
[ASPLOS’19]

XFDetector
[ASPLOS’20]

A test case generator for 
better testing efficiency

PMFuzz
[ASPLOS’21]

PM Applications

PM Library

Processor
PM HW Support

Persistent Memory

System Stack for 
Persistent Memory 

Outline

Efficient and secured
persistent memory hardware 

Software-hardware co-designs

[HPCA’18, ISCA’19, PACT’21]

New security 
vulnerabilities in 

Intel’s persistent memory

[In-submission]



PMTest: 
A Fast and Flexible Testing Framework for 

Persistent Memory Programs
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Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Khan

The 2019 International Conference on Architectural Support for 

Programming Languages and Operating Systems (ASPLOS)

NVMW Memorable Paper Award—Finalist



Software for Persistent Memory Systems

Faster 
Direct Access

11
Faster, direct access benefits storage applications

File 
System

Storage Applications

Through 
Indirections

Slower Faster 

What if the system fails?
Conventional System Persistent Memory System



Software for Persistent Memory Systems

Program customizes 

recovery

File system handles 

recovery

12
The burden of failure-recovery lies on the programmers 

File 
System

The ability to recover:
Crash consistency guarantees

Conventional System Persistent Memory System



Programming for Persistent Memory Systems

Core

Cache
Volatile

Persistent

CLWB

• Support for crash consistency has two fundamental guarantees
• Persistence: writes become persistent on demand

13

Persistent Memory

- CLWB: cache line write back

x86 instructions:



Programming for Persistent Memory Systems

• Support for crash consistency has two fundamental guarantees
• Persistence: writes become persistent on demand

• Ordering: one write becomes persistent before another

Volatile

CLWB 
SFENCE

persist_barrier

14

Core

Cache

Persistent

Persistent Memory

- CLWB: cache line write back

- SFENCE: store fence for ordering

x86 instructions:



Example of Persistent Memory Programming

Head

1 void listAppend(item_t new_val) {

2 node_t* new_node = new node_t(new_val);

3 new_node->next = head;

4 head = new_node;

5 persist_barrier();

6 }

In cache

new_node is lost after failure

2   node_t* new_node = new node_t(new_val);

3   new_node->next = head;

4   head = new_node;

Create new_node

Update new_node

Update head pointer

Unrecoverable

Writeback updates5   persist_barrier();

Writes can reorder

15

head
next

next

head

Core



1 void listAppend(item_t new_val) {

2 node_t* new_node = new node_t(new_val);

3 new_node->next = head;

Example of Persistent Memory Programming

persist_barrier();4 head = new_node;

5 persist_barrier();

6 }

Enforce writeback before changing head

Recoverable

Head

Persistent

16

Ensuring crash consistency is hard!



Programming for Persistent Memory Is Hard! 

Simplify

Low-level Primitives High-level Libraries

(e.g., Intel’s PMDK library)

System Experts
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Libraries are developed for persistent memory to 

make programming easier

Directly using low-level primitives to implement 

crash-consistent programs is not trivial

E.g., Software developed by Lenovo has misuse 
of low-level primitives, e.g., persist_barrier()

Application Developers



Application Developers

Programming for Persistent Memory Is Hard! 

Directly using low-level primitives to implement 

crash-consistent programs is not trivial

E.g., Software developed by Lenovo has misuse 
of low-level primitives, e.g., persist_barrier()

System Experts

Using high-level libraries can also lead to bugs

E.g., Software developed by Intel has misuse 

of their library functions

18
We need to test persistent memory programs



Challenge I: Expose Crash Consistency Issues 

Appears to work if no failure Failure to recover in case of failure

Crash consistency bugs

19

CLWB
SFENCE

Core

Cache Not exposed to the software

How can we expose crash consistency bugs?
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Challenge II: Various Persistent Memory Systems

PM Applications

Processor
PM HW Support

Persistent Memory

PM Library

Custom 
Programs

ARM

Persistent
Libraries

Academic 
Proposals

How can we cover various software and hardware?

x86



Hardware

Software
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Similarities in Software/Hardware Systems

WRITE, 
CLWB, SFENCE

WRITE, 
DC CVAP, DSB

Intel’s Library

Custom Program Custom Program

Operations for crash consistency are similar:
guarantees of ordering and persistence

Expose persistence and ordering



Expose Persistence and Ordering

Construct persistence intervals from instruction trace
A time interval in which a write may become persistent

Deduce persistence and ordering

A

B

Timeline

CLWB  A 

SFENCE

WRITE B
CLWB B

SFENCE

22

WRITE A

Trace

A becomes 

persistent before B



Expose Persistence and Ordering
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A

B

CLWB  A

SFENCE

WRITE B

CLWB B

SFENCE

WRITE A

Trace

A may NOT 

become persistent 

before B

Construct persistence intervals from instruction trace
A time interval in which a write may become persistent

Deduce persistence and ordering

Result: Incorrect
Timeline

Specification:
A becomes persistent before B

Interleaving



Our Work: PMTest

During runtime …

Workflow:
• Tracks accesses to persistent memory
• Deduce the ordering and persistence
• Check against specifications
• Detect crash consistency issues

WRITE A
FLUSH A
WRITE B
FLUSH B
FENCE   
... 

Construct persistence intervals

Specification

Correct

Incorrect

24



Towards Higher Efficiency and Coverage

25
[2] PMFuzz: Test Case Generation for Persistent Memory Programs. 

Sihang Liu*, Suyash Mahar*, Baishakhi Ray, and Samira Khan. ASPLOS. 2021.

[1] Cross-Failure Bug Detection in Persistent Memory Programs. 

Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch, Aasheesh Kolli, and Samira Khan. ASPLOS. 2020.

PMFuzz [2]

XFDetector [1]

PMTest

Ensure correct 

ordering and persistence

End-to-end correctness, 

including recovery

Generate high-coverage 

test casesTest Cases

These tools have detected 18 bugs in existing software 

produced by the industry for persistent memory systems 
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Hardware System for Persistent Memory

Software Support for Persistent Memory

Testing frameworks for
failure-recovery issues

PMTest
[ASPLOS’19]

XFDetector
[ASPLOS’20]

A test case generator for 
better testing efficiency

PMFuzz
[ASPLOS’21]

PM Applications

PM Library

Processor
PM HW Support

Persistent Memory

System Stack for 
Persistent Memory 

Outline

Efficient and secured
persistent memory hardware 

Software-hardware co-designs

[HPCA’18, ISCA’19, PACT’21]

New security 
vulnerabilities in 

Intel’s persistent memory

[In-submission]



Janus:
Optimizing Memory and Storage Support for 

Non-Volatile Memory Systems
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Sihang Liu, Korakit Seemakhupt, Gennady Pekhimenko, 

Aasheesh Kolli, and Samira Khan

The 2019 International Symposium on Computer Architecture (ISCA)

MICRO Top Picks—Honorable Mention



Persistent Memory Hardware

Persistent memory hardware comes different types of supports

Security

Bandwidth

Lifetime

Prevent attackers from stealing or tampering data

Encryption, integrity verification, etc.

Improve bandwidth

Deduplication, compression, etc. 

Extend lifetime

Wear-leveling, error correction, etc. 

28
Backend operations in persistent memory hardware



Increased Write Latency
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Core

Cache

Persistent Memory Write
Timeline 

Cache 
Writeback

Memory 
Access

Backend 
Operations

> 100 ns

Backend operations increase write latency



Example: Steps in listAppend()

persist_barrier

Execution
Timeline

30

Block the execution

Why is write latency critical?

Headpersist_barrier

Cache Writeback

Create 
Node

Update 
Head

Writeback 

Latency

Crash consistency mechanisms put 
write latency on the critical path



Example: Steps in listAppend()

Execution
Timeline

31

Overhead of Backend Operations

Create 
Node

Update 
Head

Backend operations increase the execution time

Create 
Node

Update 
Head

Backend 
Operations

Increased 
latency



Counter-mode
Encryption

DeduplicationIntegrity 
Verification

Each backend operation seems indivisible

Integration leads to serialized operations

32

Challenges in Optimizing Backend Operations



However, it is possible to decompose them into sub-operations

Decompose

Generate counter

Encrypt counter

Data      Encrypted counter

Counter-mode
Encryption

Generate MAC
(for integrity verification)

33

Decomposition of Backend Operations



Decomposition of Backend Operations

Deduplication
Integrity 

Verification
Counter-mode 

Encryption

Decomposing the example operations:

34
Decomposing backend operations enables more optimizations



Optimization: Parallelization

There are two types of dependencies:

Deduplication
Integrity 

Verification
Counter-mode 

Encryption

Inter-operation dependencyIntra-operation dependency

35
2. Dependency across different operations1. Dependency within each operation



Optimization: Parallelization

There are two types of dependencies:

Inter-operation dependencyIntra-operation dependency

Parallelizable

36
Deduplication

Integrity 
Verification

Counter-mode 
EncryptionSub-operations without dependency can execute in parallel



Optimization: Parallelization

There are two types of dependencies:

Inter-operation dependencyIntra-operation dependency

Parallelizable

37
Deduplication

Integrity 
Verification

Counter-mode 
EncryptionSub-operations without dependency can execute in parallel



Optimization: Pre-execution

Address DataA write consists of:

38

External dependency

Deduplication
Integrity 

Verification
Counter-mode 

Encryption
Sub-operations can pre-execute

as soon as their data/address dependency is resolved



Optimization: Pre-execution

Address DataA write consists of: Address-dependent

39
Deduplication

Integrity 
Verification

Counter-mode 
Encryption

Address-dependent sub-operations can pre-execute 
as soon as the address of the write is available



Optimization: Pre-execution

Address DataA write consists of: Data-dependent

40
Deduplication

Integrity 
Verification

Counter-mode 
Encryption

Data-dependent sub-operations can pre-execute
as soon as the data of the write is available



Optimization: Pre-execution

Address DataA write consists of: Both-dependent

41
Deduplication

Integrity 
Verification

Counter-mode 
Encryption

Both-dependent sub-operations can pre-execute as soon as 
the data and address of the write are available



Janus is a Roman god with two faces: 
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When dependent data and 

address become available

FuturePast

Pre-execute operations with 

dependency resolved

One looks into the past and another into the future

Our Work: Janus



Janus:

Serialized 

Create
Node

Update 
Head

Parallelized 

• Parallelization

Parallelization reduces the latency of each operation

Create
Node

Update
Head

Performance Improvement

Execution
Timeline

Backend operations 

Original writeback latency



Janus:

Serialized 

Create
Node

Update 
Head

Parallelized 

• Parallelization

Pre-execution moves the latency off the critical path

Create
Node

Update
Head

Backend operations 

Original writeback latencyPerformance Improvement

Execution
Timeline

Pre-executed 

• Pre-execution

Create
Node

Update
Head

Create
Node

Update
Head
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Software-Hardware Co-design

Automated software instrumentation for pre-execution

Compiler Pass Pre-execution Hint
Instrumentation

Find pre-execution opportunities 
based on address/data dependencies

Dependency 
Analysis

Instrumented 
Program

Original 
Program
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Memory 
Controller

Cores

CPU

Software-Hardware Co-design

Instrumented 
Program

Janus 
Hardware

Persistent Memory

Janus hardware executes the instrumented program

Perform pre-execution on 
parallelized backend operations



Evaluation Methodology

• Platform - Gem5 Simulation

• Design points
• Baseline: all backend operations are serialized

• Janus: pre-execute parallelized backend operations
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Processor Out-of-Order, 4GHz

L1 D/I, L2 cache 64/32KB, 2MB per core (shared)

Backend memory operation cache 512KB per core for each operation (shared)

Backend memory operation units 4 units per core



Evaluation Methodology

• Storage-class workloads
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Array Swap Randomly swap two locations in an array

Queue Randomly push/pop items to a queue

Hash Table Randomly insert key-values to a hash table

B-Tree Randomly insert key-values to a b-tree

RB-Tree Randomly insert key-values to a rb-tree

TATP Add items to a telecommunication table with the TATP input generator

TPCC Add items to a hash table with the TPCC input generator



Performance
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Janus provides 2X speedup on average

2X Speedup
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Hardware System for Persistent Memory

Software Support for Persistent Memory

Testing frameworks for
failure-recovery issues

PMTest
[ASPLOS’19]

XFDetector
[ASPLOS’20]

A test case generator for 
better testing efficiency

PMFuzz
[ASPLOS’21]

Efficient and secured
persistent memory hardware 

Software-hardware co-designs

[HPCA’18, ISCA’19, PACT’21]

New security 
vulnerabilities in 

Intel’s persistent memory

[In-submission]

PM Applications

PM Library

Processor
PM HW Support

Persistent Memory

System Stack for 
Persistent Memory 

Summary



Future Directions
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• Adaption of PM into larger scale systems
• How can datacenter-scale workloads better utilize persistent memory? 

• How can we redesign the networking system to better leverage the 
lower latency of PM?

• Integration of computation logic into PM
• What computation logic can we place on PM to accelerate memory-

intensive workloads?

• More security challenges of PM systems
• How can we design software systems for PM that ensures existing 

security guarantees? 
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