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MultiPIM: A Detailed and Configurable
Multi-Stack Processing-In-Memory Simulator

Chao Yu, Sihang Liu, Samira Khan

Abstract—Processing-in-Memory (PIM) has being actively studied as a promising solution to overcome the memory wall problem.
Therefore, there is an urgent need for a PIM simulation infrastructure to help researchers quickly understand existing problems and
verify new mechanisms. However, existing PIM simulators do not consider architectural details and the programming interface that are
necessary for a practical PIM system. In this letter, we present MultiPIM, a PIM simulator that models microarchitectural details that
stem from supporting multiple memory stacks and massively-parallel PIM cores. On top of the detailed simulation infrastructure,
MultiPIM provides an easy-to-use interface for configuring PIM hardware and adapting existing workloads for PIM offloading.

Index Terms—Processing-in-memory, simulator, memory network.
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1 INTRODUCTION

Modern workloads, such as scientific computing, graph
processing, data mining, and machine learning pose an ever-
growing demand for larger data. Despite the rapid increase
in processor and memory performance, due to the limited
bandwidth between the processors and the memories, the
memory wall becomes a major performance bottleneck. To
mitigate the memory wall, the notion of processing-in-memory
(PIM) or near-data-processing (NDP) has been proposed, which
moves processing to the memory system for lower memory
access latency and better utilization of the internal memory
bandwidth. Following this direction, there have been a myriad
of PIM systems [1–4]. Meanwhile, due to the lack of real PIM
hardware infrastructure, there is a demand for an accurate PIM
modeling and simulation platform.

There have been existing simulators, such as PIMSim [2]
and Ramulator-PIM [3, 5], that model and simulate PIM ar-
chitectures. As the research on PIM moves forward, we find
there are new demands for the simulation infrastructure. Prior
works focus on a single memory stack, without considering the
complexities in practical PIM systems. However, to meet the
need for high memory capacity and bandwidth, practical PIM
systems will consist of multiple memory stacks, and therefore,
the complexity increases. In a multi-stack PIM system, issues
such as local/remote-stack latency and coherence among PIM
processors are key performance factors. Virtual memory is
another practical problem in unified memory systems. As accel-
erators and GPUs are moving toward the unified memory [6]
for better programmability, we expect PIM systems will also
follow the same trend. To reflect these practical considerations,
the simulator needs to accurately model and simulate these ad-
ditional supports. On the other hand, the increasingly growing
research on PIM has new demands for customizability. First,
a simulator should be configurable to model different PIM
architectures, such as PIM systems with different multi-stack
memory topologies. Second, a simulator should also have a
flexible interface for programmers to offload code regions to
PIM processors. Table 1 compares MultiPIM with the existing
PIM simulators in terms of the simulated components (Comp.)
and the flexibility (Flex.).
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TABLE 1. Features Comparison.
Feature PIMSim Ramulator-PIM MultiPIM

C
om

p. Multi-stack No No Yes
PIM core cohere. No No Yes
Virtual memory No No Yes

Fl
ex

. Offloading interface Trace file Source code Source code
Parallel offloading No Yes Yes

End-to-end sim. No No Yes
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Fig. 1: An overview of PIM architecture.

The goal of this work is to design a PIM simulator that is
not only highly-configurable and easy-to-use but also precise in
modeling architectural details of practical PIM systems. In this
work, we implement MultiPIM1, a simulator that meets these
demands. We next introduce the high-level design of MultiPIM
in two aspects: architecture modeling and usability. MultiPIM
models a multi-stack PIM system connected by a memory
network, as illustrated in Figure 1, where each memory stack is
further divided into vaults. Each vault contains a PIM proces-
sor, and these processors across vaults are connected through
the on-chip network (i.e., via crossbar switches). MultiPIM
precisely models the interconnects by placing cycle-accurate
routers among the memory stacks, and crossbars among the
vaults. For better usability, the interconnect topology and the
timing parameters can be easily configured by modifying con-
figuration files, without changing the simulator’s source code.
To simplify the adaption of workloads, MultiPIM provides
simple interfaces that allow users to annotate PIM-offload
code regions. MultiPIM automatically recognizes POSIX and
OpenMP threads within the annotated regions and simulates
them on the massively-parallelized in-memory processors. The
contributions of this work are the followings:

• This work is the first open-sourced simulator that supports a
configurable multi-memory-stack PIM system.

1. Available at https://github.com/Systems-ShiftLab/MultiPIM.

https://github.com/Systems-ShiftLab/MultiPIM
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Fig. 2: Top-level software architecture of MultiPIM.

• MultiPIM precisely simulates PIM architectural details, in-
cluding the multi-stack interconnect, crossbar switches, PIM-
core coherence, and virtual memory, which are essential to a
practical PIM system.

• MultiPIM comes with an easy-to-use interface that allows the
users to not only configure the architecture but also adapt
existing workloads for evaluation.

2 MULTIPIM: SIMULATOR DESIGN
The high-level structure of MultiPIM consists of two parts,

the frontend and the backend, as illustrated in Figure 2. The
frontend performs instruction simulation while the backend
handles memory access simulation. These two parts are con-
nected through a predefined interface and work in collabo-
ration as a complete simulator. The decoupled frontend and
backend of the simulator make it easier to extend or replace
each part. For example, the current ZSim-based frontend can
be replaced by other simulators (e.g., GEM5 and GPGPU-Sim),
by adapting the new front end to the existing backend interface.
When executing a workload with MultiPIM, PIM code regions
are executed on PIM cores and the rest are executed on the host
CPU. To support the multithreaded PIM execution, MultiPIM
uses a PIM task scheduler that assigns tasks to PIM cores. Next,
we describe the frontend and backend in detail.
Frontend. The frontend of MultiPIM handles non-memory
instructions and cache accesses. As they typically have fixed
latencies, MultiPIM uses a simple timing model in the frontend.
Whereas, the latency of memory requests (i.e., memory instruc-
tions that miss the cache) varies. Therefore, MultiPIM simulates
cache miss events using the precise backend for better accuracy.
Backend. The Ramulator-based [3, 5] backend simulates the
actual latency of memory requests issued from the frontend
by routing packets through the memory network, where the
connections among the multiple memory stacks are constructed
from a user-defined configuration file (discussed in Section 3.1).
The frontend memory requests, issued by PIM cores or the
CPU, are all gathered at a request dispatcher. Then, the re-
quest dispatcher issues memory requests to the corresponding
component in the backend (i.e., link, crossbar switch or vault)
according to the requester type and destination (e.g., a request
from a PIM core goes through its crossbar switch to a remote
stack). Once a memory request is serviced by a memory stack,
the corresponding response is routed back to the requester.

3 DETAILED DESIGN AND FEATURES
3.1 Multiple Memory Support

Modern applications such as scientific computing and data
analytics are becoming increasingly memory intensive. Thus,
having multiple memory stacks is a necessity to satisfy the
need for both memory capacity and bandwidth. One of the
key features of MultiPIM is the support for accurate simulation
of a memory network that connects multiple memory stacks.
Our implementation takes memory timing parameters from
the HMC specification [7]. Note that other memory systems
can also be easily integrated, as the Ramulator-based backend
already supports various memory technologies.

<memtopology>
    <memnodes num=“16” linkspernode=“4”>
        <node id=“0”><link id=“0” tocpu=“true”/></node>
        <node id=“4”><link id=“16” tocpu=“true”/></node>
        …
    </memnodes>
    <meminterconnections>
        <interconnection from=“1” to=“4”/>
        <interconnection from=“3” to=“13”/>
        …
    </meminterconnections>
</memtopology>
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(a) XML based memory interconnection definition (b) Generated memory topology

Fig. 3: Format of (a)memory interconnection definition and
(b)the corresponding memory topology.

Flexible Memory Interconnection Definition. To support dif-
ferent memory topologies, MultiPIM generates the memory
network from a user-defined XML configuration file. Figure 3
showcases its format and the generated memory topology. The
number of memory stacks and the number of links per memory
stack are defined by the num and linkspernode attributes of
the memnodes tag. According to num and linkspernode, each
memory node/stack is assigned a unique nodeid (from 0 to
num − 1), and each of its link is assigned a unique linkid
(from nodeid ∗ linkspernode to (nodeid+1)∗ linkspernode−1).
To define the type of each link, i.e., whether it connects to
the CPU or other memory stacks, users need to specify the
tocpu attribute of the link: a true value indicates it connects
to the CPU; a false value (default case) indicates it connects to
other memory stacks. Then, to configure the connection among
memory stacks, the user needs to set the interconnection tag:
a pair of linkids represents an interconnection, and a link
only connects two memory stacks. Further, the interconnection
type can be configured as undirected (default) or directed.
In an example of linka to linkb, the directed configuration
allows packets to be transmitted only from linka to linkb; the
undirected configuration allows a bidirectional transmission.
Memory Network Timing Modeling. The timing model of the
memory network mainly consists of the crossbar switches and
the links. MultiPIM uses a cycle-accurate interconnection net-
work simulator, BookSim2 [8], to model the timing of crossbar
switches. This design makes MultiPIM extensible to different
NoC topologies (e.g., mesh, dragonfly, and torus). In MultiPIM,
each crossbar switch has a separate sub-net, and all vault con-
trollers and links in a memory stack are connected to its sub-net
as different nodes. When a packet is being transmitted between
two vaults, MultiPIM models the crossbar switch latency by
first injecting the packet to the crossbar switch from the source
node and then ejecting it from the target node. Every cycle, the
crossbar switch first ejects packets for all vault controllers and
links, and then injects packets from those vault controllers and
links. Each link and its vault controllers avoid injecting and
ejecting packets within the same cycle to avoid bus conflicts.
Besides, MultiPIM also supports an optimization that divides
the vaults in a memory stack into groups (or quadrants [7]) and
associates each vault group with a link, where the number of
groups is the same as the number of links in a memory stack.
This optimization enables packets to be transmitted directly in
a quadrant, without going through the crossbar switch.

MultiPIM precisely models the timing of memory links.
During transmission, MultiPIM first calculates its transmission
time (in cycles) linkcyclepacket based on its length and the con-
figured link speed. Upon completion of transmission, MultiPIM
adds this time to the next transmission linkcyclenext, indicating
the earliest transmission time of the next packet. This way,
MultiPIM precisely maintains the timing of packet transmission
through the memory network.
Request Dispatcher. The request dispatcher receives memory
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Fig. 4: Request dispatcher structure.

requests from all requesters (i.e., PIM cores and CPU cores) in
the frontend, and then dispatches them to different components
in the backend. Figure 4 illustrates the architecture of the re-
quest dispatcher. The frontend sends requests to the request dis-
patcher by calling the request interface. Upon an interface call,
the physical-address of a request is disassembled and mapped
to the internal memory address, including cube (or stack),
vault, bank, and DRAM address, by the predefined address
mapping scheme. For example, the address can be mapped
as RW:CH:BK:CB:VT:CL:BO or as RW:BK:CH:CB:VT:CL:BO.2

Afterward, the request is dispatched to a certain component
(i.e., link, crossbar switch or vault). If the requester is a CPU
core, the memory network first selects a link that connects to the
CPU, and then generates a packet to the destination memory
stack, according to the request and the link ID. If the requester
is a PIM core, the memory network dispatches the request
based on the following rules. A request that targets the local
vault will directly perform local memory access; other requests
will first enter the memory stack’s crossbar and then be routed
to the destination vault or memory stack. For better accuracy,
MultiPIM simulates the queuing latency during routing.
Packet Routing between Memory Stacks. As described in
Section 3.1, all the vault controllers and links in a memory stack
are regarded as individual nodes that connect to a crossbar
switch. Therefore, to access a remote memory stack, either from
the host CPU or a PIM core, packets need to go through the
memory network that consists of these switches and links. By
default, MultiPIM follows the user-defined routing policy (e.g.,
a shortest-path routing algorithm). It can also be extended to
support other dynamic routing algorithms (e.g., a load-aware
routing algorithm).

3.2 Practical System Considerations
Massive PIM cores. A practical PIM system may consist of
dozens of memory stacks with thousands of PIM cores, which
not only increases the parallelism of tasks but fully utilizes the
terabytes-per-second internal bandwidth of the whole system.
MultiPIM’s frontend is implemented based on ZSim [9] to
support fast simulation for massive PIM cores. The implemen-
tation of PIM cores is currently based on ZSim’s TimingCore
(also supports other types of ZSim cores). Besides, as described
in Section 2, the frontend of MultiPIM can integrate other
simulators (e.g., GEM5 and GPGPU-Sim) to mode PIM cores, by
connecting to the predefined MultiPIM interfaces and sending
memory requests to the request dispatcher in the backend.
Multi-PIM-core Coherence. The coherence problem arises as
threads executing on different PIM cores may share data. Ex-
isting works only consider coherence between CPU cores and
PIM cores [4], or rely on strict restrictions to avoid coherence
between PIM cores [10], which hinders the use of PIM for
general-purpose processing. As PIM cores are residing in dif-
ferent memory stacks, without a shared last-level cache (LLC),
we implement a coherence directory (can be either shared
or private) with the MESI protocol for PIM cores. MultiPIM
supports both write-through and write-back cache policies.

2. RW: Row, CH: Column High, CL: Column Low, BK: Bank, CB:
Cube, VT: Vault, BO: Byte Offset

TABLE 2. Offloading interfaces.
Interface Description

PIM Multi-Processing interface

pim_mp_begin()
Annotate the begin of multiple

PIM tasks(e.g., POSIX or OpenMP threads).
pim_mp_end() Annotate the end of multiple PIM tasks

PIM Block interface
pim_blk_begin() Annotate the begin of a PIM code block
pim_blk_end() Annotate the end of a PIM code block

Our implementation has flexible abstract interfaces for future
researchers to integrate other coherence protocols.
Virtual Memory. Although placing PIM in a separate address
space eliminates the need for address translation for PIM cores,
it increases the complexity of programming and hinders the
cooperation between CPU and PIM cores. A unified memory [6]
simplifies programming and is becoming the trend in heteroge-
neous computing–devices such as GPUs and accelerators are
moving toward a unified address space. Following this trend,
MultiPIM supports virtual memory with different page sizes
(e.g., 4KB page and 2MB page) following the Linux’s buddy
memory management mechanism. Both the CPU and PIM
cores in MultiPIM can be configured with translation lookaside
buffers (TLBs), both instruction-TLB and data-TLB, and a page
table walker (PTW). PTWs in the CPU cores are connected
to the LLC to reduce the page-table-walk overhead; however,
as there is no LLC in PIM cores, PTWs in PIM cores access
memory directly. All PTW requests are sent to the backend and
simulated as normal memory requests for better accuracy.

3.3 Parallel Computing and Offloading Interfaces
The PIM architecture is intrinsically suitable for parallel

computing because of its massive number of cores. Thus, to
make full use of the PIM computing resources, MultiPIM sup-
ports two widely-used multithreading interfaces: POSIX and
OpenMP threads. MultiPIM can automatically offload threads
in the PIM regions to parallel PIM cores.

MultiPIM provides two easy-to-use offloading interfaces to
annotate the PIM regions: A multi-processing interface and a
code-block interface, as listed in Table 2. The multi-processing
interface marks a large region of the source code and offloading
all the parallel tasks within the region to PIM. Users only
need to call the pim mp begin() and pim mp end() functions
to select the region. Inside this region, all new threads (e.g.,
an OpenMP thread group) will be scheduled to different PIM
cores. The code-block interface offloads a finer-grained code
segment within a thread, using a pair of pim blk begin() and
pim blk end(). Using a combination of these two methods, the
user can choose the optimal offloading strategy.

3.4 Limitations and Future Directions
Energy and Power Modeling. Existing open-sourced power

models (e.g., McPat and DRAMPower) can be used in con-
junction with MultiPIM. However, we leave power modeling
as a future direction. Future researchers can plug MultiPIM’s
statistics into their energy/power models.

Heterogeneous Architectures. PIM and host cores in Mul-
tiPIM have the same ISA. However, different ISAs in PIM
and CPU cores may provide better performance benefit. It is
possible to extend MultiPIM to support a different ISA for PIM
cores as long as the user can provide a trace for that ISA.

4 EVALUATION AND VALIDATION
Configurations and Workloads. Table 3 lists the configuration
of the simulated system. We use data-intensive workloads
from gapbs [11] (CC, PR and TC), with three real-word input
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TABLE 3. Simulation configurations.
Parameter Value

C
PU

Core 16 out-of-order cores @ 3.2GHz, 4-issue
L1 Cache I-Cache: 32KB, 4-way; D-Cache: 32KB, 8-way

L2 Cache & LLC L2: 256KB, 8-way; LLC: 16MB, 16-way
TLB I-TLB: 256 entries; D-TLB: 256 entries

M
em

or
y

DRAM Timing FR-FCFS, tCL=tRCD=tRP=17ns, tCWL=13ns

HMC
4GB/cube, 32 vaults, 4 layers, 8 banks/vault,
4 links/cube, 16-lane/link, 30Gb/s per lane,
clock @ 1.25GHz (links, logic layer, switch)

Crossbar 2D-Torus topology
Topologies 16 cubes, Dragonfly & Mesh, minimal routing

PI
M

Core 1 in-order-stall core @ 2GHz per vault
L1 Cache I-Cache: 16KB, 4-way; D-Cache: 16KB, 4-way

TLB I-TLB: 128 entries; D-TLB: 128 entries
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Fig. 5: Normalized performance of dragonfly and mesh topolo-
gies. All results are normalized to the CPU baseline.

graphs: USA-Road [12], SK-2005 [13], and ego-Twitter [14]. The
OpenMP threads in these workloads are offloaded to PIM using
the multi-processing offloading interface. The baseline performs
computation on the CPU, where the CPU is connected to 16
memory stacks, configured with the dragonfly topology. We
evaluate the performance impact of a PIM system with four
PIM design choices: (1) multiple stacks with remote memory
accesses, (2) memory network topology, (3) virtual memory
support, and (4) cache write policies.
Evaluation. Figure 5 shows the performance of different mem-
ory topologies: dragonfly, mesh, and an ideal case without
remote-access overhead. The performance numbers are nor-
malized to the CPU baseline. First, both the dragonfly and
mesh PIM designs have better performance than the CPU
baseline (i.e., CPU-Dragonfly). And, the dragonfly topology
(6.5× speedup over CPU-Dragonfly) is relatively more efficient
than mesh (5.3× speedup over CPU-Dragonfly) as it reduces the
number of hops when accessing the remote memory. Second,
despite the speedup from PIM, there is an approximately 2×
performance gap between the more efficient dragonfly topol-
ogy and the ideal topology, indicating that remote memory ac-
cess is a major performance bottleneck. Third, Figure 6(a) shows
that a practical PIM system (Dragonfly-VM) with virtual mem-
ory translation exhibits a 25% overhead, as compared to the
ideal design (Dragonfly-IdealVM). Thus, address translation also
has a significant performance impact. Fourth, Figure 6(b) com-
pares the performance of different cache policies: Write-Back
(Dragonfly-WB) and Write-Through (Dragonfly-WT). Overall, the
Write-Back cache has better performance than Write-Through.
However, some workloads (TC+USA-Road, CC+ego Twitter
and TC+ego Twitter) significantly benefit from Write-Through.
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Fig. 6: Normalized performance with (a) ideal virtual memory
(i.e. zero address translation overhead) and (b) different cache
write policies.

We find that most memory accesses are reads (>99.9%) in these
these workloads. As such, the Write-Through policy can avoid
the cache coherence traffic in most scenarios, such as directory
probing, caused by the Write-Back policy. This result shows
that future PIM designs may need to consider dynamic poli-
cies for the best performance. Finally, we evaluate MultiPIM’s
simulation efficiency. On average, running these benchmarks
on MultiPIM is about 105× slower than on the real host.
Validation. MultiPIM is built upon the already validated simu-
lation platforms: the frontend and backend are implemented
based on ZSim [9] and Ramulator [3, 5], respectively; the
crossbar switch is modeled with Booksim2 [8]. Thus, we fo-
cus on validating the memory network of MultiPIM against
a memory-centric network design [15]. We use an identical
configuration, including the same number of CPU cores, HMC
cubes, memory interconnections, and the same minimal routing
algorithm as the prior work [15]. We also replicate their binding
of CPU cores to links to achieve the same effect of accessing
remote memory. Then, we compare the average and the maxi-
mum hop count of dragonfly and mesh memory networks for
validation. Our results show that the maximum hop counts in
the dragonfly (4 hops) and mesh (7 hops) memory network
designs are consistent with the prior work [15], and the average
hop counts of dragonfly and mesh memory network designs
have less than 6% and 1% differences, respectively.

The results above demonstrate that MultiPIM can help
identify new research problems in PIM. Due to the limitation
on the length, we evaluate four major aspects of PIM to prove
MultiPIM’s precision and configurability. Nonetheless, other
aspects, such as packet routing algorithm, PIM task scheduling,
and PIM-core coherence, can also be evaluated with the open-
sourced MultiPIM.

5 CONCLUSION
In this paper, we introduce MultiPIM, an open-source

and highly-configurable PIM simulator that supports multiple
memory stacks. MultiPIM provides a flexible interface that sup-
ports various PIM architectural designs and can easily adapt
existing workloads for PIM offloading. We expect that future
works can better identify research problems and validate their
designs through a more precise simulation of different PIM
architectures using MultiPIM.
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