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Abstract

Persistent Memory (PM) technologies enable both fast mem-
ory access and recovery in case of a failure. To ensure crash-
consistent behavior, programs need to enforce persist order-
ing and employ mechanisms that introduce additional data
movements such as logging, checkpointing, and shadow-
paging. The emerging near-data processing (NDP) archi-
tectures can effectively reduce this overhead. In this work,
we propose NearPM, a near-data processor that accelerates
common, primitive operations that are crucial to crash consis-
tency. Using these primitives, NearPM accelerates commonly-
used crash-consistency mechanisms. NearPM further re-
duces the synchronization overheads between the NDP and
the CPU by handling ordering near memory. We propose
Partitioned Persist Ordering (PPO) that ensures a correct
persist ordering between CPU and NDP devices, as well as
among multiple NDP devices. We prototype NearPM on an
FPGA platform. NearPM executes the data-intensive opera-
tions of crash-consistency mechanisms with correct ordering
guarantees, while the rest of the program runs on the CPU.
We evaluate nine PM workloads, each implemented in three
crash consistency mechanisms: logging, checkpointing, and
shadow paging. Overall, NearPM achieves 4.3 —9.8X speedup
in the NDP-offloaded operations and 1.22 — 1.35X speedup
in the whole applications.

CCS Concepts: « Hardware — Memory and dense stor-
age; - Computer systems organization — Other architec-
tures.
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1 Introduction

Persistent main memory (PM) technologies offer both high
performance and data persistence. For example, Optane PM
[38] can be accessed through the DDR interface. Other al-
ternative PM systems [10, 76] are also being developed for
the upcoming PCle-based Compute Express Link (CXL) stan-
dard [16]. Unlike conventional storage devices (e.g., HDD and
SSD), these PM systems enable applications to perform direct
access to PM, without going through the file system interme-
diaries. Thus, PM-optimized applications can benefit from a
faster data path. These opportunities have inspired research
on developing and deploying PM [4, 6, 8, 13, 31, 48, 56, 79].
However, a new challenge arises—without the file system,
it is now up to the applications to manage the recovery of
persistent data. In case of a failure (e.g., a system crash or
power outage), applications that directly access PM need to
ensure that the persistent data is maintained in a recoverable
state. We call this property the crash consistency guarantee.

There have been myriad solutions that provide crash con-
sistency guarantees for PM-based applications. For example,
the undo-logging approach makes a backup of the existing
data to PM before updates [11, 12, 14, 15, 21, 32, 40, 54, 58];
the checkpointing method periodically makes a snapshot
of persistent data to keep a consistent, recoverable copy
[5, 23, 30, 51, 71, 73]; the shadow-paging mechanism redi-
rects writes to a shadow memory and changes page ref-
erence at commit [37, 68, 69, 88]. However, these mecha-
nisms come with a performance cost. First, crash consistency
guarantees require writes to become persistent in a spe-
cific order, introducing additional ordering constraints. For
example, the undo-logging mechanism backs up the to-be-
updated persistent data before performing the update. There-
fore, crash consistency mechanisms introduce additional
stalls to the program execution, as they need to maintain
a correct persist ordering [54, 66, 72, 82, 91]. Second, these
crash consistency mechanisms usually make extra copies of
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data [12, 14, 17, 37, 40, 47] in order to recover in case of a
failure. Such data movement introduces additional memory
bandwidth utilization. Combining these two performance
bottlenecks, crash-consistency mechanisms can place extra
data-intensive operations on the critical path.

Near-data processing (NDP) is an emerging computer ar-
chitecture design that has the potential to mitigate these
overheads. By bringing computation closer to data, NDP can
reduce the data movement between memory and processor
(e.g., CPU) [22, 35, 52, 62]. In particular, as the new CXL
standard [16] is around the corner, more opportunities for
processing closer to PM devices are opening.

In this work, we propose NearPM, a near-data processing
system for PM-based storage-class applications. NearPM is
integrated into PM memory devices, with access to the full
memory of that device. However, it is not straightforward to
accelerate PM programs as each program may follow a differ-
ent crash consistency mechanism—simply adding hardware
acceleration logic for each mechanism is impractical. We
observe that different crash consistency mechanisms share
common primitive operations. For example, undo-logging
copies the original persistent data to a log and updates the
persistent data in-place. On the other hand, redo-logging first
updates logs and then copies the logs back to the original
location. These two crash consistency techniques both copy
data to a log and update PM. Thus, by supporting common
accelerable primitives in the hardware and using them as
building blocks, NearPM is capable of accelerating various
crash consistency mechanisms.

Accelerating primitive operations speeds up the execution
but the offloaded execution still needs to satisfy the ordering
constraints. Naively, one could enforce the same ordering
guarantees as the original CPU-based program but at the
cost of excessive CPU-NDP synchronization. To overcome
the synchronization overheads, our approach is to handle
ordering near memory, enabling NDP execution to overlap
with CPU procedures.

However, handling ordering near memory has new chal-
lenges. Ordering guarantees must be satisfied even though

the execution is partitioned between the CPU and the NearPM.

For example, when offloading undo-logging to NearPM, the
log must be persisted by NearPM to memory before the CPU
performs an in-place update. Furthermore, the program ex-
ecution is not only partitioned between CPU and NearPM
but may also happen across multiple NearPM devices. For
example, two interleaved NearPM devices may both hold a
fraction of the persistent data and the execution flows on
both devices can be out of sync. Consider again the undo-log
example, assume that some object is interleaved among two
devices and that one device has the update committed but
the other is still backing up data to the log. When a failure
occurs, recovery might keep the updates in one device but
roll back updates on another, leading to inconsistencies.

To overcome the challenges we define Partitioned Per-
sist Ordering (PPO) for correct offloaded execution in NDP-
enabled PM systems. PPO defines persist ordering in two
scenarios. The first scenario is the order between the CPU
and NearPM operations. Naively, one would enforce strict
persist ordering between CPU and NearPM to provide the
same crash consistency guarantees as the original program.
However, this approach offsets the performance benefits
of NDP. We observe that persists from NearPM to mem-
ory addresses that are managed by NearPM only but not
shared with the CPU, such as logs, do not need to follow
the original ordering constraints. Therefore, such a relaxed
persist ordering mitigates CPU-side stalling and further al-
lows NearPM operations to execute in parallel. For example,
without back-and-forth synchronization, the CPU-side pro-
cedure can issue multiple independent logging operations
to NearPM and have them executed in parallel.

The second scenario is the synchronization among mul-
tiple NearPM devices. Naively, frequent synchronizations
among NearPM devices after every offloaded crash consis-
tency operation keep them at the same pace and ensure
their completion before committing updates. Similar to the
case of CPU-NDP ordering, such a naive solution degrades
performance benefits from NDP. Because NDP-managed
memory, such as logs, would not be accessed nor exposed to
the CPU-side procedure unless recovery happens. Therefore,
it is possible to delay the synchronization and move it off
the critical path of the program execution. As long as data
needed for recovery remains intact until the completion of a
series of PM operations (e.g., commit in a PM transaction),
data can still recover successfully.

With the key insights above, we provide primitive opera-
tions in crash consistency mechanisms to cover a wide range
of PM-base storage-class applications and introduce PPO to
mitigate overheads stemming from the crash consistency
guarantees in partitioned execution of NDP systems. To eval-
uate our design, we prototype NearPM on an FPGA platform
that connects to the host CPU through PCle. ! We emulate
PM using the on-board memory on the FPGA platform, al-
lowing the CPU and the NDP device on the FPGA to access
memory using loads/stores. We evaluate nine PM-optimized
workloads with two NearPM devices. Each workload has
implementations for logging, checkpointing, and shadow
paging. The main contributions are the following:

e We propose a near-data processing architecture that ac-
celerates crash consistency mechanisms, by supporting
common accelerable primitives.

o We define partitioned persist ordering (PPO) that defines the
persist ordering in NDP systems. PPO ensures correctness

IThe software and hardware implementation of NearPM are available at
https://github.com/Systems-ShiftLab/NearPMSW and https://github.com/
Systems-ShiftLab/NearPMHW, respectively.
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Figure 1. Crash consistency overheads (a) and the breakdown in logging, checkpointing, and shadow paging (b-d).
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Figure 2. Procedures in crash consistency mechanisms.

and performance when execution is partitioned among
the CPU and multiple NDP devices.

e We prototype NearPM using an FPGA platform. Our eval-
uation shows that NearPM reduces the crash consistency
overhead by 6.97%, 4.26%, and 9.76X in logging, check-
pointing, and shadow-paging-based programs, compared
to the CPU-only baseline. In terms of the end-to-end per-
formance in the whole program, it achieves 1.35x%, 1.22X,
and 1.33X speedup over the baseline, respectively.

2 Background and Motivation
2.1 Crash Consistency and PM Programming

Persistent memory technologies (PM) feature high perfor-
mance, data persistence, and byte-addressable direct access
to persistent data bypassing the file system. Intel Optane
PM [38] is a memory module that shares the memory bus
with DRAM modules; other upcoming PM technologies [7,
10, 76] will be on the PCle bus but enable direct access via
the Compute Express Link (CXL) [16].

Direct access to persistent data reduces overhead on the
data path, but at the same time moves the burden of man-
aging data recovery to applications. We refer to the ability
to restore persistent data after a failure (e.g., a power out-
age or system crash) as the crash consistency guarantee. Past
research on crash-consistent programming has proposed var-
ious mechanisms for the crash consistency guarantee, such
as undo-logging redo-logging [11, 12, 37, 40, 54], checkpoint-
ing [23, 51], and shadow paging [17, 68].

Logging replicates persistent data to a separate location
(e.g., an undo or a redo log) before updating the persistent

state. As shown in Figure 2a, undo-logging makes a fine-
grained snapshot of the original data in a log, before per-
sisting the in-place updates; it deletes the log only after the
latter completes. Similarly, redo-logging redirects each up-
date to a log, and applies the updates in-place only after
the log has become persistent. Checkpointing (Figure 2b)
maintains a coarse-grained snapshot of persistent locations
prior to updates. Shadow paging first redirects the update to
a newly allocated page and then changes the references to
the original page to the new version (Figure 2c).

These mechanisms introduce performance overheads. The
main overhead is due to intensive data movement. Figure 1a
shows that logging, checkpointing, and shadow paging mech-
anisms take up 37.7%, 48.6%, and 67.2% of the execution time,
respectively (methodology in Section 8.1). Figures 1b, 1c, and
1d further break down the crash consistency overhead, show-
ing that 68.9%, 60.4%, and 70.5% of the overhead is from data
movement in these crash consistency mechanisms, respec-
tively. Thus, there is a huge opportunity for acceleration.

2.2 Near-Data Processing (NDP)

In traditional systems, the CPU is in charge of manipulat-
ing data. For instance, to create a copy of data in mem-
ory (as shown in Figure 3a), the CPU needs to fetch data
through the cache hierarchy and write it to another CPU-
manged memory location, leading to a high data move-
ment overhead. To mitigate data movement overheads, re-
searchers have introduced the paradigm of near-data pro-
cessing (NDP) that places computation closer to the data
[2, 22, 26, 27, 53, 65, 81, 93].

NDP is well-suited for applications or code regions that are
memory-intensive and feature high parallelism. Therefore,
it has the potential to mitigate the overhead of memory-
intensive operations involved in crash consistency mecha-
nisms. The existing and upcoming PM devices are also capa-
ble of hosting computation near or inside the PM device. For
example, PCle-based PM devices can integrate compression,
query processing, and data movement logic [3, 7]; even the
more compact PM devices, such as Optane DIMMs, already
integrates controllers for data-intensive tasks [86] such as
encryption, which can be extended to NDP. Figure 3b illus-
trates how an NDP unit copies data to a log without going
through the CPU.
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2.3 Challenges of NDP Crash Consistency

In this section, we discuss the challenges in supporting NDP
processing for crash consistency operations.

Support for different crash consistency mechanisms.
Although NDP can effectively accelerate memory-intensive
procedures, NDP units are highly specialized. As a result, it is
challenging to accelerate general programs, as programmers
first need to identify NDP-friendly code regions and convert
them based on NDP-accelerated hardware primitives.

As explained in Section 2.1, there is a diversity of crash
consistency mechanisms, such as undo- and redo-logging,
checkpointing, and shadow paging. Supporting every single
one with its own dedicated acceleration logic is not realistic.
Therefore, it is necessary to find a common ground in order
to integrate NDP into a practical system. We will discuss our
high-level ideas of NDP acceleration for crash consistency
operations in Section 3.1.

Ensuring persist ordering near memory. As shown in
Figure 2, crash consistency mechanisms enforce persist or-
dering. When offloading computation to an NDP-enabled PM
device, program execution becomes partitioned between the
CPU and the PM device. Figure 4 shows how a conventional
CPU-centric system strictly orders undo-logging. Figure 4b
offloads undo-logging to an NDP, while the other steps re-
main executed on the CPU. Such a partitioned execution
breaks the ordering guarantees: the CPU concurrently per-
sists to PM, while the NDP unit is creating an undo log. In

Table 1. Evaluated crash consistency mechanisms.

Crash consistency mechanism Common operations

Logging (undo)

(11, 12, 14, 15, 21, 32, 40, 54, 58] allocate, generate metadata,

copy data, delete log, commit

Logging (redo) [29, 63, 82, 87]

Logging (undo+redo) [14, 40]

Checkpointing

[5, 23, 30, 51, 71, 73, 82] allocate, generate metadata, copy data

Shadow paging [37, 68, 69, 88] allocate, copy data, switch page

case of a failure (as indicated by the red line), as the update
was not committed, recovery attempts to read from (as indi-
cated by the rf edge) the undo log. Due to incorrect ordering,
the undo log might contain already updated data, leading to
an inconsistent recovery.

In addition, the execution may become partitioned among
multiple NDP devices. Figure 4c shows a scenario where two
PM devices interleave. As such, a PM object can span both
devices. The NDP units on the two devices operate on this
partitioned object. However, without synchronizing the exe-
cution between them, the offloaded execution might progress
at a different pace on both devices, a failure indicated by the
red line, one PM device NDP0 has committed the update, but
the other (NDP1) has not. As a result, during failure recovery,
NDPO maintains the in-place updates, as they were commit-
ted prior to failure, while NDP1 reads from the old copy in
the log. Thus, the recovered data is inconsistent: partly from
the original version and partly from the updated version. We
will discuss our high-level ideas that ensure correct persist
ordering between CPU and NDP devices, and among NDP
devices in Section 3.2.

3 High-level Ideas

In this section, we will first discuss our high-level ideas of
accelerating crash consistency operations with NDP, and
then a persist ordering for partitioned execution among CPU
and NDP devices.

3.1 Acceleration for Crash Consistency Operations

Our first insight is to divide the different crash consistency
operations into smaller primitives, as shown in Table 1. We
observe that different crash consistency techniques consist
of common accelerable routines. For example, undo- and
redo-logging both contain the following primitive opera-
tions: generate metadata (e.g., object ID, commit status, offset
in PMDK [40] logs), copy data, and delete metadata. There-
fore, our first key idea is to identify accelerable primitives in
existing crash consistency mechanisms and implement NDP
logic for these primitives in hardware near memory. We use
the term NDP procedure to describe the execution of a series
of consecutive NDP primitives that correspond to a crash
consistency operation.
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Figure 5a and Figure 5b compare executions of two undo-
logging procedures with and without NearPM. Figure 5a,
everything goes through the CPU. All operations are ordered
sequentially (even when independent operations Update A
and Log B), and the memory-intensive operations creating
and deleting the logs use the CPU. In Figure 5b accelerable
primitives executed near-data. For example, copying data to
Log A and Log B will take a shorter amount of time because
they are NDP-friendly. Because persistent ordering is han-
dled by the CPU when executing operations near memory,
NDP devices need to synchronize with the CPU. Further-
more, the CPU might remain idle while the NDP operations
are completed. This issue leads to our second key idea which
is handling ordering near memory.

Handling ordering near memory removes the overhead of
synchronization between NearPM and the CPU. In addition,
this approach allows for more relaxed persistency, allowing
the CPU and NearPM to execute in parallel. Figure 5¢ shows
the benefit of handling ordering crash-consistent programs
from the NDP side. Ordering PM programs near memory is
not free because of the partitioned nature of the execution.

3.2 Persistent Ordering for Partitioned Execution

Executing crash consistency operations near memory par-
titions the program execution. To ensure correct execution
and failure-recovery, we propose partitioned persist ordering
(PPO) that ensures persist ordering between CPU and NDP,
as well as among different NDP devices.

Persistent Ordering between CPU and NDP device. The
major challenge demonstrated in Figure 4a lies in maintain-
ing the persist ordering between the CPU and the NDP. To
enable a correct persist ordering, a naive solution is to syn-
chronize between the CPU and the NDP device actively. As
Figure 5b illustrates, with such a naive solution, execution
on the CPU side needs to wait until the execution on NDP
has been completed. Though NDP procedure is faster than
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Figure 6. An undo-logging example in multi-device parti-
tioned execution.

the CPU-only baseline (as illustrated in Figure 5a), frequent
synchronization offsets the performance benefits.

However, we observe that maintaining such a strict order-
ing is not always necessary. The partitioned execution on
NDP does not always share the memory with the CPU. In the
example of Figure 3b, the NDP procedure reads from memory
but copies and persists it to a separate memory location that
is only managed by NDP, i.e., an undo log. Therefore, the or-
der of persists to the NDP-managed memory can be relaxed.
The CPU-side update (e.g., “Update A” and “Update B” in
Figure 5c¢) needs to persist after the associated NDP logging
operations (e.g., “Log A” and “Log B” in Figure 5c). While,
independent NDP operations, such as logging different ad-
dresses can happen in parallel, without being blocked by the
CPU. In other crash consistency mechanisms, we observe
similar opportunities. For example, a page-grained check-
pointing operation on NDP only needs to persist before any
update from the CPU toward the same page, while indepen-
dent checkpointing operations can persist in parallel as they
write to a separate memory location. Based on this observa-
tion, we see the opportunity to overcome the strict ordering
between CPU and NDP units to exploit parallelization.

Synchronization among multiple NDP devices. In addi-
tion to CPU and NDP ordering, partitioned execution presents
another ordering challenge among multiple devices because
a persistent object may span multiple devices [46]. The per-
sist ordering among multiple devices is another challenge
because the execution is asynchronous among devices and
their programs do not necessarily stay at the same pace. A
naive way of maintaining the persist ordering among multi-
ple NDP devices is to actively synchronize all NDP devices
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after each crash consistency operation to make sure oper-
ations on all devices are complete before committing the
updates. As demonstrated in Figure 6b, before updating the
data in place (A or B), the CPU stalls before sending a commit
operation to the NDP devices, until logging operations on
both NDP devices have been completed. Thus, this naive
solution avoids the unrecoverable scenario in Section 2.3,
as the recovery program either recovers the logged data or
keeps the in-place updates. Compared to the CPU-centric
baseline in Figure 6a, even though this naive solution al-
ready provides better performance, both the CPU and the
NDP devices still stall for synchronization.

We further observe that the data required for recovery
is only managed by NDP and never exposed to the CPU,
unless the recovery procedure happens. In the example of
Figure 6c¢, if we relax the persist ordering between crash
consistency operations and the later commit, and delay the
synchronization among devices, the recovery program can
still read from consistent data as long as the data required for
recovery is not deleted before the delayed synchronization
has completed (i.e., “Delete logs” for A and B). In Figure 7, if
a failure happens when NDPO0 has committed the update but
NDP1 has not, the recovery procedure can still read from the
consistent copy in the log in both NDP devices, as “Delete
logs” on both devices only persists after a synchronization.
At the same time, because the synchronization is delayed, it
avoids additional stalling on CPU or NDP devices.

4 Partitioned Persist Ordering

In this section, we will provide more formal definitions for
PPO in two scenarios: ordering between CPU and NDP, and
among NDP devices.

4.1 CPU-NDP Ordering

We first denote an NDP procedure, N, that performs a se-
quence of memory accesses offloaded from CPU. Then, we
define basic memory operations to memory address x:

* R, and W;: read and write memory accesses, respectively
(from either CPU or NDP).

* Ry cpus Wxcpu, Rx NDp, and Wy ypp: CPU read, CPU write,
NDP read, and NDP write accesses, respectively.

* Ry npp € N and W, ypp € N stand for memory read or

write issued by NDP procedure N to memory address x.

Then, we define ordering between memory accesses and
NDP procedures:

po
» — denotes program order.

« 2, denotes happens-before order.
* <, denotes persist-ordering.

PPO separates out memory addresses that are only man-
aged by NDP procedures, without sharing with CPU. NDP
accesses to these memory addresses thus do not need to or-
der with memory accesses from CPU. Maintaining correct
execution between CPU and NDP fundamentally depends on
two invariants. The first invariant concerns the read-write
dependency that ensures that execution on CPU or NDP
always accesses data in the intended order that was defined
by the program. The second invariant concerns persistence,
as a correct recovery relies on enforcing persist ordering
between writes.

Invariant 1: read-write ordering. In memory addresses
shared between CPU and NDP, reads and writes issued
by an NDP procedure are strictly ordered with the CPU.
Let us define any read or write from the CPU as M, cpy:
My.cpu € {Rx.cpu, Wy cpu }, where x is shared between CPU
and NDP, i.e., x € NDP A\ x € CPU. Likewise, we define
My npp that can be either read or write to memory ad-

dress y that is shared between both CPU and NDP. Then,

po hb
YMynpp € N,Mycpy — N = M, cpy — Mynpp, and

po hb c1s
N — Mycpu = Mynpp — My cpy. In essence, within

these shared addresses, memory accesses from NDP follow
the program order with respect to the CPU.

Whereas, addresses that are only managed by NDP only
need to follow the program order within an NDP procedure.
Let Mynpp € {Ra,NDP, Wa,NDP}, where a € NDP N\ a ¢
CPU and Mb,NDP (S {Rb,NDP» Wb,NDP}> where b € NDP /\ b ¢

CPU be two memory accesses issued by an NDP procedure

N to addresses only managed by NDP. Then, M, xpp =,

hb
My npp — MaNnpp — My NDP.

Invariant 2: persistence. Like before, we discuss both
NDP-CPU shared memory and NDP-managed memory. For
memory addresses x and y that are shared between CPU and
NDP, the persist ordering follows the program order as well:

po
YWynpp € N, Wy cpu — N = Wy cpu <p WynNDP,

and N 2% Wy.cpu = Wynpp <p Wxcpu.

Writes to NDP-managed memory that is not shared with
CPU, say z (e.g., logs, checkpoints, and shadow copies) follow
relaxed persist ordering. Writes from NDP can delay their
persistence, as the CPU cannot access these addresses:

po
VYW, npp € N,N — My cpu = W npp £p Mx.cru.



4.2 Multiple-Device Synchronization

In addition to the definitions in Section 4.1, we define the

following:

* F: an event of system failure.

* N4: an NDP procedure executed on NDP device A, which

may be interrupted by a failure F. Read or write accesses

to memory address x that are issued by N4 are denoted as

RQNDP and WQNDP.

o R4 i WA NDP read R4 accesses memory
x,NDP x,NDP x,NDP

address x that was persisted by a write WQNDP before a

failure F, to recover an interrupted NDP procedure Ny.

* S: a synchronization event that enforces completion and

persistence of memory accesses among all NDP devices.

When executing a procedure on a shared object between
two NDP devices A and B, if device A synchronizes with B
using a synchronization event S, then any memory access
from the executions of Ny and Ny, may not persist before

. . . . po po
synchronization is complete, i.e., S — Wynpp, AS —
B
Wy,NDPB =S <p Wi NDP, AS <p Wy,NDP'

Invariant 3: Persist before synchronization. Before

synchronization, any memory access from NDP procedures

. . A po B po
N4 and Np must be persisted, i.e., Wx,NDP — SA Wy’NDP —
S = W;}NDP < SA WjNDP <, S. Based on this guarantee,

we next discuss the correctness of failure-recovery.

Invariant 4: Failure-recovery. When the failure happens

. . . hb
before synchronization, i.e., F — S, the recovery procedure

on each NDP device reads from data that has been persisted

before failure for recovery. Say, on NDP device A, RA i)

x,NDP
W;}NDP, where W;"NDP has persisted data for recovery. As
PPO enforces persist ordering between writes from NDP and
CPU, R;‘ NDp 18 guaranteed to read consistent data. And the

same guarantee applies to device B. When a failure happens

. . hb .
after synchronization, i.e., S — F, because all prior memory
operations have become persistent, the recovery procedure
also reads consistent data.

5 NearPM Hardware Design
5.1 Architecture of NearPM

NearPM is placed inside the PM controller of the PM de-
vice, with direct access to the PM storage medium. This
enables NearPM to access PM with higher bandwidth and
lower latency than the host processor. NearPM consists of
the following major components (Figure 8):

e Host read/write queue takes regular reads and writes
from the host processor and accesses the PM media.

e Request FIFO takes requests issued by the host processor
and keeps them until they are executed.
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Figure 8. High-level architecture of a NearPM device.
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Figure 9. Components in each NearPM unit.

e Dispatcher decodes and issues requests to NearPM units
(i.e., execution engines).

o Address mapping table converts virtual addresses in the
requests to physical addresses, as the parameters NearPM
commands are virtual addresses (details in Section 5.4).

e In-flight memory access table keeps track of memory
addresses being accessed by the NearPM units in order to
handle accesses with conflicting addresses. In case an op-
eration attempts to access an address that is being written
to, the Dispatcher stalls this operation and buffers it in the
Host read/write queue.

e NearPM units are processing engines that manipulate
data in PM and are controlled by the Dispatcher. Each
NearPM unit has a request register that stores the request
from the Dispatcher, a controller which converts requests
into control signals, a metadata generator (e.g., metadata
generation and log deletion), and a load/store unit for fine-
grained data movement, and DMA engine for large data
movement (e.g., data copy), as shown in Figure 9.

o Multi-device handler stores the status of other NearPM
devices and coordinates among them. A command execu-
tion is complete when all devices have completed execu-
tion. It keeps track of all NearPM units, issuing a request
as soon as one of them is available.

5.2 NearPM Execution Flow

In this section, we further introduce the execution flow of
NearPM that handles program-offloaded crash consistency
operations (i.e., NearPM requests) and services the regular
memory accesses from the host processor.

NearPM request execution. Figure 8 shows the workflow
(steps in blue). A NearPM request first enters the Request FIFO



(step @) and then gets decoded by the Dispatcher (step 29).
During decoding, the Dispatcher translates request operands
from virtual to physical address through an Address Map-
ping Table (step 39). After translation, the Dispatcher checks
the request’s physical address (step @)—requests without
address conflicts are immediately issued, but stall until the
completion of the other conflicting request/access (details in
Section 5.3.1). Next, NearPM resets the status bit in Multi-
device handler (step 69). Then, NearPM unit receives the
request and starts the execution immediately (step 63). Upon
completion, NearPM notifies the Multi-device handler to up-
date the status bit both locally and in other NearPM devices
(step @). When all NearPM devices have completed execu-
tion, the Multi-device handler notifies the Dispatcher (step
€9) to assign new commands to the NearPM unit.

Host memory access. Figure 8 (steps in red) describes the
execution for CPU’s memory accesses. CPU’s memory ac-
cesses enter the host read/write queue (step @b). Like before,
the Dispatcher also checks the CPU’s accesses for address
conflicts before dispatching (step @b). It issues memory ac-
cess immediately if there is no conflict from the In-flight
Access Table (step 6b), Otherwise, it buffers CPU’s access
until the other access has completed.

5.3 Correctness Guarantees

5.3.1 CPU-NDP Ordering. NearPM implementation fol-
lows PPO. We first discuss the implementation that ensures
CPU-NDP ordering.

Invariant 1 is ensured by the Dispatcher (Section 5.1).
When NearPM dispatches a request to a NearPM unit for
execution, it updates addresses in the NearPM access table
(Figure 10) When the CPU accesses PM (Figure 10 step @),
NearPM checks if there are ordering dependencies between
inflight NearPM execution and incoming CPU memory ac-
cesses (step @b). If a conflict is detected, NearPM buffers
incoming memory access from the host (step 6b) until the
conflicting access is completed by the NearPM units (step @b).
To avoid ordering invariants violations between NDP proce-
dures in a single NearPM device, the Dispatcher checks the
lookup table for conflicts between memory ranges accessed
by the pending and in-flight requests (step @2). If there is a
conflict, the Dispatcher delays the issue of pending requests
(step 69) until the conflicting access has completed (step @).

Invariant 2 is ensured by writing back all updates to PM
on the CPU side before invoking an NDP procedure. As there
is no write caching in the NDP device, as soon as NDP issues
a write access to PM, it enters the persistence domain.

5.3.2 NDP-NDP Ordering. PPO enables delayed synchro-
nization because writes to data required for recovery do not
need to complete immediately. Therefore, synchronization
is not on the critical path. We take an approach described in
Figure 11 to coordinate the completion of requests among
devices. When the program issues a NearPM request that
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Figure 12. Synchronization state machine of partitioned
execution on two devices.

operates on a persistent object spanning multiple devices,
similar to issuing memory requests in interleaved memory
modules, the memory controller sends the NearPM request
to all interleaved NearPM devices according to their address
ranges. Each NearPM device has a Multi-device handler that
keeps track of the status of each command in local NearPM
execution logic as well as in other NearPM devices. After
NearPM starts execution, it waits for the completion status
from other NearPM devices (step (D) and its local execu-
tion (step (2)). Finally, NearPM removes or resets the data
required for recovery, which is not on the critical path of ex-
ecution. In this way, the delayed synchronization mitigates
the performance overheads.

PPO maintains a state machine to keep track of the syn-
chronization status during partitioned execution to meet in-
variant 3. Figure 12 shows a state machine for a two-device
setup. The state machine starts from the All Complete (C)
state until a command that was duplicated to execute in



two devices is received. Then the state machine changes its
state to Executing (E) and keeps monitoring for Receive local
complete or Receive remote complete signals from local exe-
cution or remote execution. After receiving the command
complete signals from all devices, it will return back to the
All Complete state. When both devices reach All Complete
state, writes before this point have become persistent.

5.3.3 Recovery. Failure-recovery is another aspect of cor-
rectness. To satisfy Invariant 4, the NDP system keeps in-
flight operations in a persistence domain and restores them
after failure.

Persistence domain. PM hardware systems employ ex-
tended persistence domains (e.g., ADR [64] and eADR [75])
that include not only the PM devices but also buffers/caches
in the processor. As NearPM executes the crash consistency
operations in the PM module and services regular memory
accesses from the host processor, these operations and mem-
ory access requests should also be placed in the persistence
domain, in case they are not completed before failure. Fig-
ure 8 marks the hardware components of NearPM within
the persistence domain in green: Request FIFO (2 kB), Ad-
dress Look-Up Table in the Address translator (432 Bytes),
In-flight request registers (256 Bytes) in the Dispatcher, and
Host Read/Write Queue (4 kB). Those structures have a total
capacity of 7 kB, much less than the buffers (tens of kBs) in
existing Optane PM modules [86]). Thus, it is practical to use
residual capacitors similar to existing Optane PM to write
back structures in the persistence domain to a reserved PM
location upon failure.

Recovery procedure. After the system is up again, the
hardware of a NearPM device ensures that the results of
in-flight NearPM requests and pending host memory ac-
cesses in the persistent domain are visible to the recovery
program. In a case where there are multiple NearPM devices
in the system, the recovery program needs to determine the
progress made by each device prior to failure—the latest
synchronization point that all NearPM devices reach before
failure happens. The recovery procedure of NearPM hard-
ware includes two steps: (1) NearPM loads the data from the
reserved PM region back to the structures in the persistence
domain. (2) NearPM replays the in-flight NearPM requests
and host memory accesses until it reaches the latest synchro-
nization point. Thus, the results of all in-flight operations
prior to the synchronization point are visible in memory.

5.4 Address Translation

Address translation has always been a challenge in NDP
systems [9, 22, 26, 26, 27, 35, 36, 52, 53, 53, 65, 80, 81, 89, 93] as
structures such as TLB are in the host processor. Fortunately,
PM libraries (e.g.[40]) usually allocate PM as pools and a
memory access to the pool manifests as a base address plus an
offset within the pool. Prior works have shown that as long
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Program addr space: | [ PMpooll ] ]
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Figure 13. Address translation in NearPM.

as a pool’s base address is translated, it is straightforward to
also translate other memory addresses in the same pool using
the offset value [83, 84, 92]. Therefore, NearPM keeps the
translation of the base address for each pool and performs
address translation without going through the CPU.

Figure 13 shows the address translation procedure in
NearPM. When the program creates a PM pool, NearPM
first computes the offset between the virtual and physical
addresses. The offset is then stored in the Address Mapping
Table indexed by the pool ID (step (D). Because the addresses
encoded in the command are from the virtual address space,
to execute them, NearPM looks up the pool ID of the incom-
ing request (step (2)) and translates its virtual address to the
physical address, by adding the offset to the incoming virtual
address (step (3)). When accommodating multi-threaded ap-
plications, in addition to the pool ID, thread ID is also used
for indexing address translation offset.

Context switch handling. NearPM keeps the base ad-
dress mapping for each PM pool. As each pool ID is unique
in the system, even across a context switch, the pool-ID-
indexed translation mapping still remains valid.

Multi-device support. A PM pool can span across multi-
ple interleaved NearPM devices, where certain bits in the vir-
tual address identifies which NearPM device the data locates.
Based on these bits, each device contains a virtual-physical
mapping for the base address that is mapped to its local de-
vice. Thus, the translation mechanism that relies on the base
address of the pool still applies to multi-device scenarios.

6 NearPM Software Design

NearPM is a software-hardware co-design, including a soft-
ware interface for developing programs and communication
between the program and NearPM.

6.1 Software Interface

For the API to communicate with the NearPM hardware,
there is a dedicated control path (Figure 8). This control path
is memory-mapped using a separate address space from that
of the PM. At the application level, the program needs to
provide the device path of NearPM to NearPM_init_device
which memory-maps this command path.



Table 2. NearPM software interface.

NearPM primitives Arguments Description

NearPM_undolg_create pool_id, thread_id, old_data_ptr, size Undo-logging: generate metadata and copy old data to an undo log

NearPM_applylog pool_id, thread_id, redolog_ptr, size Redo-logging: apply a redo log by copying data to the original location

NearPM_commit_log pool_id, thread_id Undo/redo-logging: delete and commit multiple logs in a PMDK transaction

NearPM_ckpoint_create pool_id, thread_id, old_data_ptr, size Checkpointing: generate metadata and copy existing data to a checkpoint before update

NearPM_shadowcpy pool_id, thread_id, page_ptr, size Shadow-copy: copy an existing page before update

NearPM _init_device device_path Device initialization: memory-maps NearPM’s command interface

1 undolog_a = undolog_a =
undolog_create(&a); NearPM_undolog_create(...);
2 persist(undolog_a); 2 a = new_value;
3 a = new_value; persist(a);
4 persist(a);
5 undolog_ delete(ulog a);
(a) Logging (undo) on CPU (b) Logging (undo) on NearPM
1 redolog_a = redolog_a
redolog_create(new value); rlog create(new value);
2 per‘sist(r‘edolo§ persist(redolog_a ,
3 a = value(redolog_. a)_, NearPM_applylog(. .
4 persist(a);
5 redolog_t delete(redolog a);
(c) Logging (redo) on CPU (d) Logging (redo) on NearPM
1 ckpoint_a = NearPM_ckpoint_create(...);
ckpoint_create(&a); 2 a = new_value;
2 persist(checkpoint_a);
3 a = new_value;
(e) Checkpointing on CPU (f) Checkpointing on NearPM
1 shadowcpy(newpage,oldpage); NearPM_shadowcpy(...);
) (o //write new_value (...) 7/write new_value
3 per‘51st(new value); persist(new_value);
4 switch page'(newpage oldpage); switch page(newpage oldpage);

(g) Shadow paging on CPU (h) Shadow paging on NearPM

Figure 14. Examples that demonstrate the use of NearPM’s
software interface.

The PM program running on the host processor uses a
software API to issue commands. Table 2 lists the primitive
functions and their parameters, which can be directly called
in PM programs or libraries. In our evaluation, we imple-
mented the APIs in the PMDK [40] library. The API is ag-
nostic whether or not an operation is single or multi-device.
The address range of the command operand is monitored
by the memory controller; a command is duplicated if the
operand object is shared among multiple devices. Figure 14
demonstrates code examples that show the use of these calls.
Each primitive function in the API corresponds to the crash
consistency mechanisms in Table 1. Besides the listed primi-
tive functions, our prototyping system can also be extended
to test and develop other crash consistency mechanisms.

6.2 Recovery

When recovering back from a system failure the software is
responsible for initializing the hardware recovery procedure.
The recovery program sends the command for system-wide
recovery and the NearPM devices will individually run their
own recovery procedures following the hardware steps dis-
cussed in Section 5.3.3 After completion, the PM program
can start executing from the last consistent program point.

Table 3. System for evaluation.

System Configuration

CPU AMD Zen 2, 2 GHz, 8 cores

DRAM 4x16 GB DDR4

FPGA Xilinx UltraScale+ VCU118 (Section 7)
PM 2 GB, Emulated with on-FPGA DRAM
NearPM 4 NearPM units, 32 entry request FIFO

Software System

(O] Ubuntu 20.04, Linux kernel v5.3.0
Environment gcc/g++-9.2, PMDK-1.9

7 NearPM Implementation

We use the Xilinx Virtex UltraScale+ VCU118 evaluation plat-
form [90] to implement NearPM. The development board
is attached to a PCle 3.0 x 8 slot, with a bandwidth of 8
GB/s. We use 2 GB of the onboard DRAM to emulate PM
on a NearPM device. In our evaluation, the access latency
to the emulated PM is 436 ns, similar to real evaluations
on Intel’s Optane DCPMM [48]. NearPM connects to the
CPU’s memory controller via the PCle bus. Constrained by
the FPGA platform, we implement two NearPM devices on
the same FPGA, with each device having four NearPM Units
running at 300MHz. The emulated NearPM devices on the
FPGA are mapped to a contiguous memory region. NearPM
can only support interleaving which will result in a contigu-
ous block in a given device. Scatter-gather operations are not
supported. Each NearPM device contains four NearPM units,
connected through an internal AXI bus of 4 GB/s bandwidth.

The DRAM on the FPGA board is mapped to the CPU’s
physical memory space in the write-back cacheable mode
and is directly accessible through load-store instructions.
However, the Linux kernel maps FPGA’s memory as non-
cacheable by default. Thus, we manipulate the memory
type range register (MTRR) at the boot time to enable
writeback caching. Thus, our implementation is a software-
implemented coherent memory. In the upcoming CXL [16]
systems, we expect even better performance.
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Figure 15. Speedup in code regions for crash consistency in (a) logging, (b) checkpointing, and (c) shadow paging.
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Table 4. Workloads for evaluation.

Workload Input

TPCC, TATP [32] Process TPCC/TATP transactions

btree, rbtree, skiplist,
hashmap [40]

Insert random key-values (value size is
64 B)

memcached [58] 100% write requst from YCSB [18]

redis [45] 100% write requst from YCSB [18]

pmemkv [42] Input from PmemKV-bench [43]

8 Evaluation
8.1 Methodology

System configuration. We evaluate PPO on the proto-
type of NearPM (implementation in Section 7) in a testbed
described with the system configurations in Table 3.

Workloads. Table 4 lists the workloads and their inputs.
TPCC and TATP are PM transactions from a prior work [32];
btree, rbtree, skiplist, and hashmap are key-value stores from
PMDK [40] library; Redis and Memcached are real-world
workloads. PmemKV [42] is a key-value store that uses a B+
tree as the backend. For each workload, we evaluate three
crash consistency implementations:

e Logging: The performance of each program’s original
crash consistency support based on undo/redo logging.

e Checkpointing: The performance of a modified crash
consistency support based on checkpointing.

(b)
Figure 16. End-to-end speedup in (a) logging, (b) checkpointing, and (c) shadow paging.

e Shadow paging: The performance of a modified crash
consistency support based on shadow paging.

Note that both checkpointing and shadow paging operate at
4 kB page granularity.

Comparison points. We evaluate four configurations,
where all experiments are evaluated 10 times. The error bars
(standard deviation) are included in the figures.

¢ Baseline executes only on the CPU.

e NearPM SD offloads crash consistency operations to a
single NearPM device.

e NearPM MD SW-sync offloads crash consistency oper-
ations to two NearPM devices and synchronizes using a
CPU-polling, software mechanism.

e NearPM MD offloads crash consistency operations to two
NearPM devices with delayed synchronization.

8.2 Speedup Evaluation

In this section, we evaluate applications (listed in Table 4)
in the configurations mentioned in Section 8.1. We first
demonstrate the benefit of NDP using a microbenchmark
and demonstrate the parallelism in real applications. Then,
we present the speedup of these applications of both crash
consistency code regions and the whole programs.

8.2.1 Micro-benchmark. We evaluate NearPM with a
micro-benchmark that copies persistent data. Figure 17
shows the speedup from NearPM. As data size increases,
the speedup also increases: from 1.13X when the size is 64 B
to 5.57X when copying 16 kB of data. This micro-benchmark
does not introduce operation-level parallelism. Thus, the
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Figure 17. Data movement speedup of NearPM over CPU.

speedup is a result of the proximity to memory when copy-
ing data with NearPM. This speedup is comparable to prior
FPGA-based NDP prototypes [33, 57, 70].

8.2.2 CPU-NearPM parallelism. We evaluate the benefit
of parallelism between CPU and NDP devices, i.e., CPU and
NearPM may execute at the same time for a certain fraction
of the program. Figure 18 presents the average percentage of
execution that is parallelizable between the CPU and NearPM
of workloads in Table 4. On average, logging, checkpointing,
and shadow paging have 20.01%, 17.25%, and 24.68% of the
execution parallelizable, respectively.

8.2.3 Speedup in crash consistency operations. Fig-
ure 15 shows the speedup within code regions that maintain
crash consistency. On average PPO achieves 6.9%, 4.3%, and
9.8x speedup for logging, checkpointing, and shadow pag-
ing, respectively. We notice that TATP has a low speedup of
1.23% in undo-logging. The main reason is that TATP has
only one NearPM operation that performs logging and com-
mits immediately afterward. Thus, it does not benefit from
parallelism in NearPM execution.

8.2.4 'Whole-application speedup. We then present the
whole-application performance in Figure 16. NearPM SD
achieves 1.29%, 1.15%, and 1.28X average speedup for log-
ging, checkpointing, and shadow paging, respectively. This
result shows the performance PPO achieved by effective han-
dling of ordering between the CPU and NDP. NearPM MD
SW-sync achieves 1.21x, 1.14%, and 1.23X average speedup
for logging, checkpointing, and shadow paging, respectively.
Due to the synchronization overhead, its speedup is lower
compared to NearPM SD. By reducing the synchronization
overhead, NearPM MD achieves 1.35%, 1.22%, and 1.33x
speedup on average in the three crash consistency mecha-
nisms, respectively.

8.3 Scalability Evaluation

Next, we evaluate the scalability of NearPM. First, we demon-
strate the multithreading performance of two realistic work-
loads, Memcached [58], and Redis [45]. Then, we present the
impact of the number of NearPM units on performance, by
sweeping the number of units.
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Figure 20. Throughput with multiple threads.

8.3.1 Multi-threaded Performance. This experiment
evaluates the performance when the application on the host
CPU is multithreaded. We scale Redis and Memcached with
1 to 16 threads, for both the number of clients and the back-
end handlers. Memcached access different memory pools
for each thread, while Redis shares the same pool amongst
multiple threads. Figure 20 presents the speedup over the
CPU-based baseline with the same number of threads. As
the number of threads increases, the speedup from NearPM
reduces but still outperforms the baseline. This trend still
holds even when we consider standard error for multiple
runs as shown in black in Figure 20. The main reason for the
slowdown is that the number of execution units in NearPM
is limited to four due to the limitation of our FPGA platform.
We expect commercialized systems to integrate more units
for intensive workloads.

8.3.2 Sensitivity study on the numbers of NearPM
units. This experiment compares the performance with 1,
2, and 4 NearPM units. Figure 19 shows that the average
speedup over the CPU-based baseline increases with more
NearPM units, as the offloaded program contains paralleliz-
able operations, such as copying multiple cache lines in a
page can happen in parallel.

9 Discussion

Scalability. Though in Section 8, we evaluated our proto-
type of two NearPM devices, due to limitations in our FPGA
platform, PPO is scalable as synchronizations among devices
are off the critical path. Scalability is critical to performance
with CXL-supported systems.



Expected performance in commercial NDP systems.
Our NearPM prototype shows comparable performance as
prior work that also prototype NDP systems [33, 57, 70]—we
achieve 7—9x% speed when evaluating the offloaded crash con-
sistency operations (i.e., accelerable computation kernels).
In commercialized implementations, we expect better perfor-
mance as the NearPM device can allow for more processing
units that operate at a higher clock frequency.

Opportunity with CXL.. As CXL is around the corner,
future-generation PM systems are expected to be a CXL-
based instead of occupying DIMM slots. Though evaluated
using a PCle FPGA, NearPM is independent of the intercon-
nect technology and can largely benefit from the hardware-
based coherence support from CXL. In the current design,
the software handles coherence by explicitly writing up-
dated data back to NearPM devices. With CXL, we expect a
much lower communication and synchronization overhead
between NearPM devices and the host CPU.

Security considerations. NearPM target performance op-
timization using NDP while ensuring correctness. Thus, se-
curity in multi-tenant scenarios is not the focus. Nonetheless,
to support multi-tenancy, the existing address-translation
mechanism can be extended to support boundary checking
by storing the pool size alongside the address translation
offset. We expect future work to build upon our prototype.

NUMA support. NUMA systems are common in datacen-
ters. Although our evaluation platform is single-socket, the
design of NearPM fundamentally supports NUMA systems.
The major challenge in NUMA system is that accesses to
memory devices that belong to a different socket can experi-
ence a longer latency, increasing the variability of memory
accesses. NearPM guarantees a correct ordering of PM ac-
cesses and NDP-offloaded operations. Therefore, NearPM is
NUMA-safe.

10 Related Work

Near-data processing. NDP aims to reduce memory
movement in the conventional CPU-centric systems [1, 2,
22, 24-27, 35, 36, 52, 53, 65, 80, 81, 93]. For example, Row-
Clone [77] accelerates bulk data movement in DRAM and
TETRIS [28] accelerates neural networks. There have also
been works that bring processing to SSDs. For example, Com-
poundFS [74] accelerates file system IO operations in SSD
and Almanac [85] retains SSD history logs using an in-SSD
logic. However, they target conventional storage systems
instead of PM systems that directly manage persistent data.

Hardware support for memory persistency. The mem-
ory persistency model ensures the order in which writes
become persistent. Pelly et al. first propose memory per-
sistency [72] and followup works continue to optimize the
performance of persistency models. For example, DPO [55]

and HOPS [66], PMEM-Spec [49], and Themis[78] provide
efficient persistency models by reducing the cost of blocking
due to data persistence. However, those works target CPU-
centric systems. In comparison, our work, NearPM, extends
persistence to NDP.

Crash consistency mechanisms. There are a number of
previous works that provide solutions for crash consistency.
Intel’s PMDK library provides transactions using a combi-
nation of undo and redo logs [39]. There are also databases
and key-value stores based on PMDK that maintain crash
consistency, such as Redis [45], MongoDB [44], RocksDB
[41], and Memcached [58]. Atlas [11] and SFR [32] con-
vert code regions marked by synchronization primitives to
undo-log-based transactions. Checkpointing creates a copy
of the updated persistent memory to enable recovery [20, 50].
DudeTM [59] and SoftWrAP [29] use shadow memory to
maintain redo logs before applying them to PM. These mech-
anisms tend to maintain additional copies of data for re-
covery. Therefore, NearPM, can be applied to mitigate their
crash consistency overhead. Recently works also use soft-
ware testing techniques to detect bugs in crash-consistent
programs [19, 34, 60, 61, 67]. These techniques can also be
applied to a NearPM system to detect misuse of offloaded
crash consistency primitives.

11 Conclusions

In this work, we propose NearPM, an accelerator for crash
consistency mechanisms in PM-based storage-class applica-
tions. To realize the full potential of acceleration, we move
the ordering handling between CPU and NearPM near mem-
ory, using Partitioned Persist Ordering (PPO). We proto-
type NearPM on an FPGA platform and evaluate nine PM
workloads, where each workload has three versions that use
logging, checkpointing, and shadow paging for crash con-
sistency. Overall, NearPM achieves 4.3 — 9.8 speedup in
the NDP-offloaded operations and 1.22 — 1.35X speedup in
end-to-end execution of the whole applications.
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A Artifact Appendix
A.1 Abstract

This artifact document consists of the description of how
to reproduce the major results of the NearPM accelerator
evaluation results in Section 8. The evaluation is performed
on a Xilinx Virtex UltraScale+ VCU118 Evaluation Platform,
where the on-board DRAM is emulated as PM, accessible by
both the host CPU and NDP units in NearPM.

A.2 Description & Requirements

A.2.1 How to access. The source code of the software
and the FPGA implementation are hosted on two GitHub
repositories:

e https://github.com/Systems-ShiftLab/NearPMSW
e https://github.com/Systems-ShiftLab/NearPMHW

A.2.2 Hardware dependencies.

e CPU: AMD Ryzen 7 3700X CPU

e Memory: 64 GB DDR4

e FPGA: Xilinx Virtex UltraScale+ VCU118 evaluation
platform

The hardware build process uses the Vivado toolchain
(version 2018.2 in our experiments). A licensed Vivado ver-
sion is required to create the bitstreams for the experiments
in this document. The toolchain compiles and deploys the
bitstreams.

A.2.3 Software dependencies. The software dependen-
cies include both kernel modifications and PM workloads.
First, the kernel of the system must be modified and re-
compiled to enable caching for the emulated PM. The in-
structions for the required kernel change are provided in
NearPMHW/kernelchange.pdf. In our setup, the evaluation
was done using Linux kernel version 5.4.0. The workloads
in the software repository NearPMSW have their own depen-
dencies, which are included in our repository.

A.3 Set-up

Clone the NearPMHW repository and create the Vivado
project as NearPMHW/NearPM:

$ git clone https://github.com/Systems-ShiftLab /NearPMHW
$ cd NearPMHW
$ vivado -mode batch -source build. tcl

Next, launch Vivado in GUI mode.

$ vivado

Click on Open Project and open the newly created NearPM
project. After the project loading is completed you will find
out five designs on the Sources tab. To build any of the de-
signs: First, right-click on the design and select “Set as Top”.
Next, click “Generate Bitstream” in “Flow Navigator” tab and
follow the prompt.


https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://github.com/Systems-ShiftLab/NearPMSW
https://github.com/Systems-ShiftLab/NearPMHW

This process will take approximately one hour. After the
bitstream is generated, program the FPGA using the “Hard-
ware Manager” (bottom left of the Vivado window).

First, make sure that caching of the FPGA memory re-
gion is functional. Generate the bitstream for design5 in the
project. Use the previously explained steps to generate the
bitstream. After programming the device, restart the host
and then run the following commands for testing.
$ source NearPMHW/setup .sh
$ git clone https://github.com/Systems-ShiftLab/NearPMSW
cd NearPMSW/pcache

make
sudo ./random-chase
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If caching works properly, the access latency will be
around 1-2 ns for smaller block sizes due to caching and
keeps increasing as the program proceeds due to of cache
misses when accessing larger blocks. You may terminate the
test program after analyzing several data sizes.

A.4 Evaluation workflow

A.4.1 Major Claims. The artifact comes with scripts that
reproduce the key results in the following figures:

e Figure 15: Speedup in code regions for crash consis-
tency in (a) logging, (b) checkpointing, and (c) shadow
paging.

o Figure 16: End-to-end speedup in (a) logging, (b)
checkpointing, and (c) shadow paging.

A.4.2 Experiments. After setting up the environment,
reproduce the following experiments.

Experiment (E1): [Figure 15] [60 human-minutes + 2
compute-hour]: The experiment will reproduce the results in
Figure 15.

For this result to be regenerated the generated bitstream
of design5 of the Vivado project must be loaded onto the
FPGA. Restart the host and run the following commands.

$ cd NearPMSW
$ ./genfigl5.sh

The output will present the results in a readable format.

Experiment (E2): [Figure 16] [60 human-minutes + 2
compute-hour]: The experiment will reproduce the results in
Figure 16.

For this result to be regenerated the generated bitstream
of design5 of the Vivado project must be first loaded onto
the FPGA. Restart the host and run the following commands.

$ source ./NearPMHW/setup .sh

Next, run the following commands to get the results for the
NearPM MD-sync case.

$ cd NearPMSW
$ ./genMDsync.sh

Next, take the following steps on Vivado:

. Open Vivado GUL

. Click on Open Block Design and select design_5.

. Double click on the block multi thread command_0.

. Change Dimm0 End Addr to @xBFFFFFFF.

. Follow the steps in Appendix A.3 to generate bitstream
and program the FPGA.

After restarting the host, run the following commands.

G~ W N =

$ source NearPMHW/setup .sh
$ cd NearPMSW
$ ./ genfigl6.sh
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