
PIMProf: An Automated Program Profiler for
Processing-in-Memory Offloading Decisions

Yizhou Wei∗, Minxuan Zhou†, Sihang Liu∗, Korakit Seemakhupt∗, Tajana Rosing†, and Samira Khan∗
∗University of Virginia, †University of California San Diego

Email: {yizhouwei, sihangliu, korakit, samirakhan}@virginia.edu, {miz087, tajana}@ucsd.edu

Abstract—Processing-in-memory (PIM) architectures reduce
the data movement overhead by bringing computation closer to the
memory. However, a key challenge is to decide which code regions
of a program should be offloaded to PIM for the best performance.
The goal of this work is to help programmers leverage PIM
architectures by automatically profiling legacy workloads to find
PIM-friendly code regions for offloading. We propose PIMProf1,
an automated profiling and offloading tool to determine PIM
offloading regions for CPU-PIM hybrid architectures. PIMProf
efficiently models the comprehensive cost related to PIM of-
floading and makes the offloading decision by an effective and
computational-tractable algorithm. We demonstrate the effective-
ness of PIMProf by evaluating the GAP graph benchmark suite
and the PARSEC benchmark suite under different PIM and CPU
configurations. Our evaluation shows that, compared to the CPU
baseline and a PIM-only configuration, the offloading decisions by
PIMProf provides 5.33× and 1.39× speedup in the GAP graph
workloads, respectively; 2.22× and 1.74× speedup in the PARSEC
benchmarks, respectively.

I. INTRODUCTION

Modern workloads, such as graph processing, machine
learning, and big data analytics, have increasingly higher
demand on memory. Therefore, recent works move computation
closer to memory and design different processing-in-memory
(PIM) architectures to relieve the pressure on main memory
bandwidth. For example, some works implement a large number
of simple and low-power processors in memory to accelerate
general-purpose workloads [1]–[3]; some other works design
specialized cores to accelerate certain workloads or computation
kernels [4]; it is also viable to employ in-situ bulk logic inside
memory arrays, where the in-memory logic only supports simple
operations (e.g., bitwise operators) but can utilize the massive
internal memory bandwidth [4]–[6]. Figure 1 shows a typical
PIM architecture [1, 2, 4], where we integrate processing
elements near the memory (e.g., logic die of Micron’s hybrid-
memory cube (HMC) [7]). The processing units are able to
process complex operations without communicating with the
host CPU. With the different execution patterns enabled by PIM
operations in conventional systems, the immediate question
arises—how can one determine which code region to offload to
the memory side in order to fully exploit the benefits of PIM?

A common solution in previous works is to offload predeter-
mined procedures that can be accelerated by PIM, such as special
instructions [3, 8, 9] or compute kernels [2]. However, a more
generic solution is to have general code regions offloaded to PIM,

1The source code of PIMProf can be found at https://github.com/Systems-
ShiftLab/PIMProf

Host CPU

Core Core Core Core

L1$ L1$ L1$ L1$

Last-level cache

Parallel Light-weight PIM Cores

Core Core Core Core

L1$ L1$ L1$ L1$

Core Core Core Core

L1$ L1$ L1$ L1$

Memory Controllers

Memory Logic Die

Memory DRAM Dies

Fig. 1. High-level structure of a processing-in-memory (PIM) architecture.

in order to reap the benefits from PIM, such as high bandwidth
and parallelism. Such a general offloading scheme, nonetheless,
adds complexities to the offloading decision, as there are extra
switching costs between PIM and CPU, such as data movement
between PIM and CPU due to data dependency and OS-level
context switching. To decide how a general program can best
benefit from PIM offloading, there are two major challenges.
First, we need a comprehensive model of the costs due to
different offloading decisions, where modeling the extra cost
of switching between CPU and PIM during runtime is the key.
Second, even with a cost model, it is still hard to make the
offloading decision for multiple regions when the switching cost
is involved, as the switching cost of one region depends on others.
Thus, the challenge is how we can efficiently explore offloading
decisions. In this work, we implement PIMProf, an automated
PIM profiling and offloading tool for general programs running
on CPU-PIM hybrid architectures. The contributions of this
work are the following:

• This is the first work that designs a profiler to automatically
determine PIM candidates in a general program for PIM
architectures, with different practical offloading overheads
taken into account. PIMProf tackles the two challenges with:
(1) an efficient cost modeling for PIM-offloaded programs,
and (2) an effective and computational-tractable heuristic-
based algorithm for offloading decision-making.
• We demonstrate the effectiveness of PIMProf by evaluating a

graph benchmark suite, GAP [10], and another more general
benchmark, PARSEC [11]), under different PIM and CPU
configurations.
• In GAP benchmarks, which are dominated by memory-

intensive PIM-friendly kernels, PIMProf shows that many
CPU-friendly regions are offloaded to PIM along with
PIM-friendly regions to reduce data transfer overhead
between them. PIMProf provides 5.33×/1.39× speedup over

https://github.com/Systems-ShiftLab/PIMProf
https://github.com/Systems-ShiftLab/PIMProf

for(int k = k1; k < k2; k++) {
 float distance = dist(points->p[k],points->p[0],points->dim);
 points->p[k].cost = distance * points->p[k].weight;
 points->p[k].assign = 0;
}
...
for(i = 1; i < points->num; i++) {
 bool to_open = ((float)lrand48()/(float)INT_MAX) <
 (points->p[i].cost/z); // RNG and FP division are CPU-friendly
 if(to_open) {
 for(int k = k1; k < k2; k++) {
 float distance=dist(points->p[i],points->p[k],points->dim);
 if(distance*points->p[k].weight < points->p[k].cost) {
 points->p[k].cost = distance * points->p[k].weight;

 points->p[k].assign = i;
 }
 }
 }
}

p

❶

❷

❸

Fig. 2. Streamcluster offloading decision with and without data dependency.

CPU/PIM-only configuration for GAP on average.
• Our evaluation on PARSEC shows that only a few workloads

have enough memory intensity and parallelism to be able to
exploit the benefits of PIM. PIMProf provides 2.22×/1.74×
benefit over CPU/PIM-only configurations for PARSEC
workloads on average, and shows major speedup for four
out of nine workloads we experimented with.

II. CHALLENGES IN PIM OFFLOADING

Processing-in-memory (PIM) architectures overcome the
memory wall problem [12] by placing computation units close to
or within the memory device. Because of the abundant internal
bandwidth and parallelism, PIM architectures are efficient in
performing memory-intensive and highly-parallel procedures
(e.g., specialized instructions or computation kernels). Therefore,
a simple strategy of exploiting advantages of PIM can be
offloading code regions that meet these characteristics. For
example, code regions with a high cache miss rate—typically
measured as misses per kilo instructions (MPKI)—can be
accelerated by leveraging the high internal bandwidth in PIM.
However, in practice, hybrid CPU-PIM execution involves two
main categories of additional switching costs between CPU and
PIM: the cost from extra memory movement (data dependency
cost) and the cost from extra context switch (context switch
cost). Therefore, a naive MPKI- or parallelism-based offloading
solution may not perform well, especially in real-life workloads
with complicated dependencies.

Figure 2 shows a snippet of code from Streamcluster, a
workload in the PARSEC benchmark suite [11]. The three code
regions are part of a function for computing the approximated k-
Median. Based on the MPKI and parallelism, both region Ê and
Ì are PIM-friendly, whereas region Ë, which involves random
number generation and floating-point division, is CPU-friendly.
However, the data dependency across regions can affect the
overall execution time, as switching between CPU and PIM
processors incurs data writeback from CPU cache to PIM. In
this example, since region Ë has data dependency with both
region Ê and Ì, executing Ë along with Ê and Ì on PIM
minimizes the data transfer overhead between CPU and PIM,
therefore, offering better performance.

Figure 3 shows the performance of PIM offloading based on
MPKI and parallelism for nine PARSEC workloads (detailed
methodology in Section IV). We use configurations of CPU-
only and PIM-only execution as the baselines and normalize all

0

1

2

3

4

5

C
P

U
-o

n
ly

P
IM

-o
n

ly

M
P

K
I-

b
a

se
d

C
P

U
-o

n
ly

P
IM

-o
n

ly

M
P

K
I-

b
a

se
d

C
P

U
-o

n
ly

P
IM

-o
n

ly

M
P

K
I-

b
a

se
d

C
P

U
-o

n
ly

P
IM

-o
n

ly

M
P

K
I-

b
a

se
d

C
P

U
-o

n
ly

P
IM

-o
n

ly

M
P

K
I-

b
a

se
d

C
P

U
-o

n
ly

P
IM

-o
n

ly

M
P

K
I-

b
a

se
d

C
P

U
-o

n
ly

P
IM

-o
n

ly

M
P

K
I-

b
a

se
d

C
P

U
-o

n
ly

P
IM

-o
n

ly

M
P

K
I-

b
a

se
d

C
P

U
-o

n
ly

P
IM

-o
n

ly

M
P

K
I-

b
a

se
d

black body dedup ferret fluid freq stream swap x264

N
o

rm
a

li
ze

d
 E

x
ec

u
ti

o
n

 T
im

e

CPU PIM
Data-Dependency Context-Switch41.6 22.7

Fig. 3. Offloading performance based on MPKI and parallelism for PARSEC
benchmarks, as compared to CPU-only and PIM-only offloading.

results to CPU-only. This experiment shows that MPKI-based
and parallelism-based offloading schemes cannot improve the
performance over the baselines in many cases. Even worse,
MPKI-based offloading significantly degrades the performance
of CPU-only offloading for several workloads (e.g., 41.6×
slower for Bodytrack and 22.7× slower for Swaptions). The
reason behind such performance degradation is the extremely
large overhead of data dependency and context switch caused
by offloading consecutive code regions to different platforms.

The motivational results demonstrate that PIM offloading
should consider not only memory access cost and parallelism
but also the data dependency cost. However, making offloading
decisions based on the cost of data dependency is challenging,
which highly depends on the execution of prior code regions.
Therefore, it is extremely hard for programmers to manually find
out PIM-friendly code regions, even with tools that profile the
cache miss status (e.g., Intel VTune [13] that reads performance
counters and Pin tool [14] that simulates the cache hierarchy).

III. PIMPROF DESIGN

The goal of this work is to tackle the PIM-offloading
problem: For a given program, what regions should be offloaded
to the PIM side in a CPU-PIM heterogeneous architecture.
There are two significant challenges: First, comprehensive cost
modeling of offloading decisions can be complicated due to
an extremely large number of data interactions in general
programs. Furthermore, it is hard to design a computational-
tractable algorithm to explore all possible offloading candidates
to minimize the holistic cost. To overcome these challenges, we
provide PIMProf, an end-to-end tool that automatically generates
offloading decisions for general programs running on CPU-PIM
architectures. The workflow of PIMProf is shown in Figure 4.

A. Program Instrumentation

PIMProf statically instruments the program using an
LLVM [15] compiler pass. It divides the entire program into
small regions to enable fine-grained profiling by inserting
lightweight marker functions, and the program regions are used
as the basic unit for profiling and offloading. The granularity of
program regions is configurable so that applications that vary in
size, parallelism and data dependency patterns may all benefit
from offloading. In our evaluation, we choose two granularities:
the basic-block-grained [16] offloading, which usually works
better for programs whose PIM-friendliness changes frequently;

Instrumentation
(Section III-A)

Input Program

Simulator
Decision Solver
(Section III-D)

Offloading Decision +
Performance SummaryArchitecture Config

Instrumented
Binary

Runtime
Statistics

Profiling Library
(Section III-B)

Cost Modeling
(Section III-C)

Execution Cost
Data Dependency Cost

Context Switch Cost

Fig. 4. PIMProf overview.

and the function-grained offloading, which is suitable for larger-
scale programs whose PIM-friendliness changes less frequently,
by sacrificing some potential optimization opportunities.

B. Runtime Profiling

Based on the automatically-instrumented region boundaries
(e.g., basic block or function), PIMProf collects the runtime
statistics for each region, including execution time, cache hit rate
of memory locations accessed by this code region, and number of
instructions in this region. As real PIM hardware is mostly under
academic and industry research, PIMProf collects the runtime
information from a simulator (Intel’s Sniper [17]). To compare
the offloading benefits, PIMProf simulates the execution on both
the PIM and CPU architectures. With the runtime statistics for
both processor types, the next step is to model the cost.

C. Cost Modeling

In order to provide good offloading decisions for a program,
it is necessary to fully understand the cost model of different
program executions for minimizing the total cost. Although the
execution time depends on multiple factors, it is possible to
consider those factors separately and then generate the overall
cost. We identify two major sources of cost: the execution cost
which is due to the execution of the code region (either on
CPU or PIM) and the switching cost which is the overhead for
maintaining the consistency of data and the program context
when switching between CPU and PIM.

1) Execution cost: As PIMProf has collected the statistics
about the runtime information of executing the code region both
on CPU and PIM, the execution cost directly comes from the
runtime profile. In Section IV-A, we elaborate on the details of
simulation used for modeling both CPU and PIM architectures.

2) Switching cost: The switching cost comes from two
sources. The first source is the data dependency between code
regions that are placed on different processing units, e.g., one
region on CPU and another on PIM. The second source is the
context switch, which mainly includes the overhead of saving
and restoring the processor states [18]. Different from the data
dependency cost, context switch has a more or less constant
cost, which is determined by the operating system.

Data dependency Cost. We analyze the data dependency
between program regions at cache line granularity, as memory
transfer is cache-line-grained. When the same cache line of
data is shared by two program regions that execute in different
places (PIM and CPU), we model a single data transfer as the
total cost of one cache line flush issued by the source, plus one
cache line fetch issued by the destination. Figure 5a shows a
code example with multiple program regions. Assume that we
execute region 0 on CPU and region 1 on PIM, and variables a
and b are stored in different cache lines, then when we switch

for(int i = 0; i < 20; ++i) {
 if(i % 4 == 0) {
 a = q; // Region 0
 b = a + 1;
 } else if {
 q = a + b; // Region 1
 a = q;
 b = a + 1;
 q = a + b;
 } else if {
 q = a + b; // Region 2
 q = a + 1;
 a = q;
 } else {
 q = a + b; // Region 3
 }
}

(c) Split chain
into segments

by W’s.

&a &b

0W
 0W

1R 1R
1W
 1W
1R 1R

2R 2R
2R
2W

3R 3R

&a &b

0W
 0W

1R 1R
1W
 1W
1R 1R

2R 2R
2R
2W

3R 3R
(d) Remove

repeated
accesses.

&a &b

0W
 0W

1R 1R
1W
 1W
1R 1R

2R 2R
2R
2W

3R 3R
(e) Merge

same segments.

&a &b

0W 0W

1R 1R

1W 1W

2R 2R

2W

3R 3R

cnt=5
cnt=5

cnt=5
cnt=5

cnt=5
cnt=5

cnt=5 cnt=5

cnt=5cnt=5

cnt=5

(f) Sort by
number of

occurrences
(cnt).

1W→2R

1W→2R→3R

2W→3R

0W→1R

cnt=5

cnt=5

cnt=5

cnt=10

(a) Source code.
(b) Collect data-

dependency
chain.

0W→1R
cnt=5Example: WRITE in region 0, followed by READ in region 1.

This chain/segment appears 5 times.

Fig. 5. Optimizations to the data dependency chain.

between them, the memory locations of a and b each incur
a data dependency cost. Because the values of a and b are
both updated by a WRITE in region 0, the CPU needs to flush
the updates back to memory and then the PIM unit fetches the
updated data from memory. The number of data dependency
instances increases if there are multiple shared locations. To
compute the total data dependency cost of a certain offloading
decision, a naive way is to go over all memory accesses, and
increase the cost wherever a data transfer happens. However,
this is not feasible for a real-world program as we need to iterate
over all possible decisions to find the best one. As a solution, we
apply a few optimizations to provide a good offloading decision
with reasonable overhead, as described in Section III-D.

Context Switch Cost. The context switch cost appears when
two neighboring regions are executed in different places. This
cost is usually constant, depending on the operating system.
To compute this type of cost, PIMProf keeps track of how
many times the program goes across the boundary of one region
to another when executing the program by using a weighted
directed graph. The weight of each edge is the number of times
the execution goes from one region to another. Figure 6a shows
an example of the context switch graph.

D. Solver for offloading decisions

The target of the solver is to find an offloading decision for
each region that minimizes the sum of the execution cost, the
data dependency cost, and the context switch cost. The solver
generates offline decisions so each region will not change its
place of execution during the runtime. Without the data depen-
dency cost, finding an offloading decision that minimizes the
other costs is straightforward. However, it becomes challenging
when the data dependency cost is considered. This section
discusses how we optimize the computation of data dependency
cost and incorporate this method into the solver of PIMProf.

Model data-dependency as chains. To formalize the data
dependency of all memory accesses, we model them as the data
dependency chains, shown in Figure 5b. For each cache line, its
data dependency chain records the information of all memory
accesses to it, including the region ID that the access occurs
and the access type (READ/WRITE). An access to different
addresses but within the same cache line is recorded to the
same chain. Created in this way, all accesses to a cache line are
logged in a single data dependency chain. Though functioning,
this method is not storage-efficient. Next, we perform several
optimizations to reduce its storage overhead.

Split data dependency chains into segments. There are a
few observations we can use to remove redundant information

(a) Context switch graph

1

2

0

3

cnt=5

cnt=5

cnt=5cnt=4

1W→2R

1W→2R→3R

2W→3R

0W→1R

cnt=5

cnt=5

cnt=5

cnt=10

(c) Example of finding the batch to permute for a single
data segment using context switch graph

Assume max batch size = 3, find batch for segment: 2W→3R
cnt=5

1

2

0

3

cnt=5

cnt=5

cnt=5cnt=4

❶Mark regions that are
already in the segment.

❷Repeatedly add regions that
have most context switches with

currently marked regions.

1

2

0

3

cnt=5

cnt=5

cnt=5cnt=4

Add Region 1

❸Repeat until we reach max
batch size. Then permute the
decisions for current batch.

1

2

0

3

cnt=5

cnt=5

cnt=5cnt=4

Stop. Permute
decisions for
batch {1, 2, 3}.

(b) Find the corresponding batch using context switch graph, and permute
decisions for the batch of each segment

Process segments
in the order of

their cnt

Initial batch

{1, 2}

{1, 2, 3}

{2, 3}

{0, 1}

Batch to permute after
adding context switch
(max batch size = 3)

{0, 1, 2}

{1, 2, 3}

{1, 2, 3}

{0, 1, 2}

Fig. 6. Permute small batches of regions created from dependency segments
and context switch to find offloading decision that minimizes total cost.

in data dependency chains. First, data transfer will only occur
when the program performs a READ in one place but the data
was previously updated by a WRITE in the other place, i.e.,
read-after-write (RAW) in different places. There will be no data
transfer if all READs between two consecutive WRITEs are
executed in the same place as the first WRITE. And, the second
WRITE will overwrite the old value, breaking the dependency
chain. Thus, the follow-up READs may only depend on the
second WRITE. Therefore, we divide the dependency chain
into shorter segments that start with a WRITE and end with
the READ before the next WRITE (Figure 5c). In this way,
the total data dependency cost is equal to the sum of the
data dependency cost of all segments. Each segment incurs
a cost of at most one cache line flush and one cache line fetch,
when the segment contains regions offloaded to different places.
Second, subsequent READs from the same region as the first
READ/WRITE do not change the data dependency cost of the
segment. This is because the place (PIM or CPU) that has
executed the first READ/WRITE already holds the latest data.
Thus, subsequent READs from the same region will not trigger
extra data transfer and can be removed from the segment (Figure
5d). Third, since PIMProf tracks the data dependency at cache
line granularity, RAW to a cache line in different places will
always trigger one extra cache line flush and one cache line
fetch. By assuming that this cost is the same for all cache lines,
PIMProf merges the same segments (segment with the same
sequence of memory operations and region IDs) from different
cache lines (Figure 5e), and tracks the number of occurrences
using a counter (cnt in Figure 5).

Heuristic decision-solving algorithm. When finding the
minimal cost, changing the decision of one offloaded region
would cause the dependency cost with other regions to change.
Thus, a trivial algorithm that permutes all possible decisions
will have a complexity of O(2n), where n is the number of
regions. In a practical program, this complexity cannot be solved
within a reasonable amount of time2. Therefore, instead of
using general-purpose solvers for optimization problems, we
create a heuristic algorithm based on our observation: The
data dependency segments are usually short (most segments

2A special case of our problem where we only consider the execution cost
and context switch cost (and set all data dependency cost to 0), is equivalent to
the 0-1 quadratic programming problem, which is already NP-complete [19].

TABLE I
SYSTEM CONFIGURATION.

Out-of-Order CPU (baseline)
1/2/4 General purpose processors

3GHz, 4-way superscalar
32kB L1I, 32kB L1D, 256kB L2, 2MB L3

General-purpose in-order (PIM) [2]
16/32/64 general purpose cores

32kB L1I, 32kB L1D
Switching Cost

Cache line fetch/flush on CPU: 60 ns, on PIM: 30 ns
Context Switch: 2 µs [18]

only have 2-3 regions in our experiment) because data remain
in cache for a limited time before it is evicted or flushed to
memory, such that it is feasible to test all decision combinations
for regions in a single segment. Based on this observation,
PIMProf uses a heuristic method that permutes the decisions
in small batches of regions3, while keeping the other decisions
the same, and check if any of those changes in the decisions
reduces the total cost. During permutation, the same region
can appear in multiple batches. PIMProf starts from segments
with fewer occurrences so that the decisions of more important
segments can have a chance to overwrite previous decisions
(sort the segments as shown in Figure 5f and 6b). As a result,
subsequent decisions that reduce the total cost can have a chance
to overwrite previous ones. When creating the batch, PIMProf
needs to consider both the data dependency and the context
switch. PIMProf starts by initializing each batch with all regions
in one segment that have data dependencies. Then, to take related
context switch into account (Figure 6a), it keeps adding new
regions that have a context switch to/from the existing regions
in the batch, until the current batch reaches a pre-set threshold
(15 regions in our setup). Figure 6b shows the initial batches
and the resulting batches after adding related context switches;
Figure 6c demonstrates an example that creates the batch for
segment 2W→3R. After creating all batches, PIMProf iterates
over them by permuting the decisions of the regions in each
batch. Every iteration, it finds the decision for each region that
yields the lowest total cost. Eventually, this heuristic algorithm
will find near-optimal offloading decisions for the program.

IV. EVALUATION

In this section, we first describe our evaluation methodology,
and then present the results of our evaluated workloads.

A. Methodology

Evaluated Configurations. We model several CPU and
PIM architectures on the Sniper simulator [17], as listed in
Table I. The baseline configuration consists of out-of-order
CPU cores similar to high-performance server processors. And,
the configuration of PIM contains Atom-like in-order general-
purpose cores [2]. We also provide sensitivity analysis by
varying the number of cores on both CPU and PIM.

Evaluated Workloads. We use two widely-used benchmark
suites that contain a variety of workloads to demonstrate the

3PIMProf will only consider a segment when its occurrence exceeds a
threshold (at least 0.01% of the total execution time in our setup) to have
enough impact on the overall performance.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
P

U
-o

n
ly

P
IM

-o
n

ly

M
P

K
I-

b
a
se

d
-F

u
n

c

M
P

K
I-

b
a
se

d
-B

B
L

N
o
D

ep
-F

u
n

c

N
o
D

ep
-B

B
L

P
IM

P
r
o
f-

F
u

n
c

P
IM

P
r
o
f-

B
B

L

C
P

U
-o

n
ly

P
IM

-o
n

ly

M
P

K
I-

b
a
se

d
-F

u
n

c

M
P

K
I-

b
a
se

d
-B

B
L

N
o
D

ep
-F

u
n

c

N
o
D

ep
-B

B
L

P
IM

P
r
o
f-

F
u

n
c

P
IM

P
r
o
f-

B
B

L

GAP PARSEC

G
eo

m
e
a

n
 o

f
N

o
r
m

a
li

z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

347.7 9.2 2.8 5.9 16.2

Fig. 7. Geometric mean of the execu-
tion time of all design points, PIMProf
performance highlighted. (Execution time
normalized to CPU-only).

0

0.2

0.4

0.6

0.8

1

1.2

C
P

U
-o

n
ly

P
IM

-o
n

ly

P
IM

P
ro

f-
F

u
n

c

P
IM

P
r
o
f-

B
B

L

C
P

U
-o

n
ly

P
IM

-o
n

ly

P
IM

P
ro

f-
F

u
n

c

P
IM

P
r
o
f-

B
B

L

C
P

U
-o

n
ly

P
IM

-o
n

ly

P
IM

P
ro

f-
F

u
n

c

P
IM

P
r
o
f-

B
B

L

C
P

U
-o

n
ly

P
IM

-o
n

ly

P
IM

P
ro

f-
F

u
n

c

P
IM

P
r
o
f-

B
B

L

C
P

U
-o

n
ly

P
IM

-o
n

ly

P
IM

P
ro

f-
F

u
n

c

P
IM

P
r
o
f-

B
B

L

C
P

U
-o

n
ly

P
IM

-o
n

ly

P
IM

P
ro

f-
F

u
n

c

P
IM

P
r
o
f-

B
B

L

C
P

U
-o

n
ly

P
IM

-o
n

ly

P
IM

P
ro

f-
F

u
n

c

P
IM

P
r
o
f-

B
B

L

C
P

U
-o

n
ly

P
IM

-o
n

ly

P
IM

P
ro

f-
F

u
n

c

P
IM

P
r
o
f-

B
B

L

C
P

U
-o

n
ly

P
IM

-o
n

ly

P
IM

P
ro

f-
F

u
n

c

P
IM

P
r
o
f-

B
B

L

C
P

U
-o

n
ly

P
IM

-o
n

ly

P
IM

P
ro

f-
F

u
n

c

P
IM

P
r
o
f-

B
B

L

C
P

U
-o

n
ly

P
IM

-o
n

ly

P
IM

P
ro

f-
F

u
n

c

P
IM

P
r
o
f-

B
B

L

C
P

U
-o

n
ly

P
IM

-o
n

ly

P
IM

P
ro

f-
F

u
n

c

P
IM

P
r
o
f-

B
B

L

C
P

U
-o

n
ly

P
IM

-o
n

ly

P
IM

P
ro

f-
F

u
n

c

P
IM

P
r
o
f-

B
B

L

C
P

U
-o

n
ly

P
IM

-o
n

ly

P
IM

P
ro

f-
F

u
n

c

P
IM

P
r
o
f-

B
B

L

bc bfs cc pr sssp black body dedup ferret fluid freq stream swap x264

N
o

rm
a

li
ze

d
 E

x
ec

u
ti

o
n

 T
im

e

CPU PIM Data-Dependency Context-Switch 1.77

Fig. 8. Execution time breakdown of GAP and PARSEC workloads using PIMProf offloading decisions. We include
four categories of costs: execution cost on CPU, execution cost on PIM, data-dependency cost and context-switch
cost. The data dependency and context switch cost in this graph are not significant because PIMProf decisions
remove most of them. (Execution time normalized to CPU-only).

flexibility of PIMProf: (1) graph benchmark suite (GAP) [10]—
high memory intensity and parallelism. (2) PARSEC benchmark
suite [11]—irregular workloads that are harder for manual
offloading.

System Configurations. We evaluate four system configura-
tions as the baselines compared to PIMProf.
• CPU-only runs the whole program on CPU.
• PIM-only runs the whole program on PIM.
• MPKI-based (MPKI & parallelism-only) detects the MPKI

and parallelism of the program and offloads a region to PIM
if both the MPKI and parallelism of the region exceed the
threshold (5 for MPKI [20] and 16 for parallelism).

• NoDep (Execution-cost-aware-only) decides where to exe-
cute a region based on simply whether the execution cost is
lower on CPU or PIM. It is usually suitable for applications
with multiple independent kernels.

• PIMProf (Data-dependency & context-switch-aware) de-
cides whether to execute a region on CPU or PIM based on
the execution, data dependency, and context switch cost.

All configurations including the baselines and PIMProf will be
evaluated with two different offloading granularities: function-
level (Func) and basic-block-level (BBL).

B. Performance Analysis

We first demonstrate the performance of two different
benchmark suites when running on a CPU-PIM hybrid system
with a 1-core CPU and a 32-core HMC system. Figure 8 further
breaks down the performance of PIMProf (basic-block-grained).

Performance of Graph Workloads. We evaluate the perfor-
mance of graph workloads with in-order PIM cores, as prior
work demonstrated that these kernels provide a significant
performance benefit when offloaded to PIM [8]. Figure 8
shows the latency breakdown of each cost category when
running these workloads on CPU, PIM, and CPU-PIM (under
different strategies). We draw three conclusions from the results.
First, offloading graph kernels as a whole to PIM (PIM-only)
provides on average 1.89× speedup as compared to the CPU-
only execution. Second, the MPKI-aware offloading method
(MPKI-based-Func) is only 3.9% better than the PIM-only
method because the switching overhead (data dependency and
context switch) offsets the benefits from PIM offloading. Third,
PIMProf (with awareness of switching overhead) provides 5.33×
speedup over CPU-only (39% and 34% faster than PIM-only and

MPKI-aware offloading, respectively). We also show that using
PIMProf heuristics on function-level granularity (PIMProf-Func)
provides a 13% improvement over PIM-only, since the GAP
workloads have simpler data dependency compared to PARSEC.
However, due to the coarser granularity, PIMProf-Func misses
some offloading opportunities. Thus, it is slower than PIMProf-
BBL (19% slower). We conclude that the offloading decision
made by PIMProf reduces the switching cost, while still
exploiting the benefits of PIM architecture.

Performance of PARSEC Workloads. PARSEC workloads
have higher irregularity than the simpler graph workloads.
Therefore, it is usually hard to find out PIM-friendly regions
in PARSEC workloads by directly analyzing the MPKI and
parallelism. In this experiment, we examine them with PIMProf
to determine if PARSEC workloads contain PIM-friendly
regions. Figure 7 demonstrates the overall speedup with various
decision-making strategies for these workloads. First, PIMProf-
Func provides 2.22× speedup over CPU-only and 1.74× over
PIM-only. Second, we also notice that PIMProf-BBL is not
performing as well as PIMProf-Func. We found that the heuristic
search algorithm is limited by the maximum number of regions.
Because the number of functions is much less than that of
basic blocks, the function-grained scheme is less likely to be
constrained by the limit. Nonetheless, it provides 1.99× speedup
over CPU-only and 1.55× over PIM-only. Third, due to the
large switching cost of PARSEC workloads, MPKI-based and
NoDep methods are not performing well. Figure 8 shows the
PIMProf decision execution time breakdown of these workloads.
We make the following observations: First, PIMProf decides
to offload most regions to CPU for PIM-unfriendly workloads
(e.g., Ferret) to minimize the overhead but can only provide
marginal improvement over CPU-only. Second, PIMProf-Func
provides a 38% improvement on average for PIM-friendly
workloads (e.g., Bodytrack, Dedup, Streamcluster, Swaptions
and X264). Third, Blackscholes, Ferret, and Fluidanimate do
not show good performance with a naive PIM-only strategy, but
PIMProf-Func is able to figure out PIM/CPU-friendly regions
in these workloads and provides 2.50× speedup over the PIM-
only configuration. We conclude that PIMProf is effective in
determining the offloading decisions for irregular workloads and
can be used to profile real-world workloads to estimate their
expected performance improvements from PIM architectures.

0

1

2

bc bfs cc pr sssp black body dedup ferret fluid freq stream swap x264

N
o

rm
a

li
ze

d
 E

x
ec

u
ti

o
n

 T
im

e

Number of PIM Cores

CPU PIM

Data-Dependency Context-Switch

PIM-only

PIMProf

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

Fig. 9. PIMProf-BBL execution time breakdown when fixing CPU core number
while varying PIM core number. (Normalized to CPU-only)

0

1

2

3

4

5

bc bfs cc pr sssp black body dedup ferret fluid freq stream swap x264

N
o

rm
a

li
ze

d
 E

x
ec

u
ti

o
n

T
im

e

Number of CPU cores

CPU PIM
Data-Dependency Context-Switch
CPU-only

PIMProf

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

8.1 6.1

Fig. 10. PIMProf-BBL execution time breakdown when fixing PIM core number
while varying CPU core number. (Normalized to PIM-only)

C. Sensitivity Analysis

We next perform a sensitivity study on different CPU/PIM
core configurations.

Parallelism. For multi-threading workloads, the performance
tightly depends on the parallelism provided by the underlying
hardware, including both the CPU and PIM. Therefore, we
test PIMProf-BBL offloading decisions for GAP and PARSEC
workloads on architectures with variable numbers of CPU and
PIM cores. We first fix CPU core number to 1 and vary the
number of PIM cores, as shown in Figure 9. In general, PIMProf-
BBL provides better performance than CPU-only and PIM-only
in all configurations. However, the offloading benefit is marginal
in some scenarios (e.g., 16-core Ferret), as the CPU performance
is comparable with PIM and the benefit does not compensate
for the switching overhead. We also observe that the decision of
benchmarks, e.g., Pagerank and Bodytrack, moves from “mainly
execute on CPU” to “mainly execute on PIM” as the number of
PIM cores increases. Likewise, in workloads such as Bodytrack
and Dedup, with PIM cores fixed to 32, the decision moves
from “mainly execute on PIM” to “mainly execute on CPU” as
the number of CPU cores increases (shown in Figure 10).

PIM Core Frequency. Unlike the CPU that typically contains
powerful cores, PIM architectures need to meet a tighter
hardware constraint, e.g., only allows light-weight in-order cores.
Therefore, we explore the design space of PIM cores and test the
efficiency of PIM offloading for a few PIM core configurations
that vary in core frequency. The results in Figure 11 shows that
PIMProf-BBL also tends to move more execution from CPU to
PIM as the frequency of PIM cores increases.

V. CONCLUSIONS

In this work, we propose PIMProf, an automated profiling
and offloading tool to determine PIM offloading regions for
CPU-PIM hybrid architectures. PIMProf tackles the challenges

0

1

2

bc bfs cc pr sssp black body dedup ferret fluid freq stream swap x264

N
o

rm
a

li
ze

d
 E

x
ec

u
ti

o
n

 T
im

e

PIM Core Frequency (GHz)

CPU PIM

Data-Depedency Context-Switch

PIM-only

PIMProf

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Fig. 11. PIMProf-BBL execution time breakdown when fixing CPU core while
increasing PIM core frequency. (Normalized to CPU-only)

of PIM offloading through efficient cost modeling and optimiza-
tion algorithm. Our evaluation shows that PIMProf provides
5.33×/1.39× speedup over CPU/PIM-only configuration for
graph benchmarks, and 2.22×/1.74× speedup over CPU/PIM-
only configuration for PARSEC benchmarks. A wide range
of future PIM-related research can benefit from PIMProf for
automatically profiling the emerging applications running on
PIM architectures and quickly generating efficient PIM-based
acceleration for general programs.

VI. ACKNOWLEDGEMENT

This work was supported in part by JUMP CRISP, an SRC
program sponsored by DARPA; and NSF grants (#1730158,
#2100237, #1911095, #2112167, #2052809, #1826967).

REFERENCES

[1] D. P. Zhang et al., “TOP-PIM: Throughput-oriented programmable
processing in memory,” in HPDC, 2014.

[2] J. Ahn et al., “A scalable processing-in-memory accelerator for parallel
graph processing,” in ISCA, 2015.

[3] K. Hsieh et al., “Transparent offloading and mapping (TOM): Enabling
programmer-transparent near-data processing in GPU systems,” in ISCA,
2016.

[4] M. Gao et al., “TETRIS: Scalable and efficient neural network acceleration
with 3D memory,” in ASPLOS, 2017.

[5] F. Gao et al., “ComputeDRAM: In-Memory compute using off-the-shelf
DRAMs,” in MICRO, 2019.

[6] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise
operations using commodity dram technology,” in MICRO, 2017.

[7] Hybrid Memory Cube Consortium, “HMC Specification 2.0,” 2014.
[8] J. Ahn et al., “PIM-Enabled Instructions: A low-overhead, locality-aware

processing-in-memory architecture,” in ISCA, 2015.
[9] R. Hadidi et al., “Cairo: A compiler-assisted technique for enabling

instruction-level offloading of processing-in-memory,” TACO, 2017.
[10] S. Beamer et al., “The GAP benchmark suite,” CoRR, 2015. [Online].

Available: http://arxiv.org/abs/1508.03619
[11] C. Bienia et al., “The PARSEC benchmark suite: Characterization and

architectural implications,” in PACT, 2008.
[12] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of

the obvious,” ACM SIGARCH computer architecture news, vol. 23, no. 1,
pp. 20–24, 1995.

[13] Intel, “Intel vtune profiler,” https://software.intel.com/content/www/us/en/
develop/tools/oneapi/components/vtune-profiler.html, 2021.

[14] C.-K. Luk et al., “Pin: Building customized program analysis tools with
dynamic instrumentation,” in PLDI, 2005.

[15] “The llvm compiler infrastructure,” https://llvm.org, 2021.
[16] F. E. Allen, “Control flow analysis,” in Proceedings of a Symposium on

Compiler Optimization, 1970.
[17] T. E. Carlson et al., “An evaluation of high-level mechanistic core models,”

TACO, 2014.
[18] J. Litton et al., “Light-weight contexts: An OS abstraction for safety and

performance,” in OSDI, 2016.
[19] A. Caprara, “Constrained 0–1 quadratic programming: Basic approaches

and extensions,” European Journal of Operational Research, 2008.
[20] A. Boroumand et al., “Google workloads for consumer devices: Mitigating

data movement bottlenecks,” in ASPLOS, 2018.

http://arxiv.org/abs/1508.03619
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
https://llvm.org

	Introduction
	Challenges in PIM offloading
	PIMProf Design
	Program Instrumentation
	Runtime Profiling
	Cost Modeling
	Execution cost
	Switching cost

	Solver for offloading decisions

	Evaluation
	Methodology
	Performance Analysis
	Sensitivity Analysis

	Conclusions
	Acknowledgement
	References

