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Abstract—To guarantee data persistence, storage workloads
(such as key-value stores and databases) typically use a syn-
chronous protocol that places the network and server stack
latency on the critical path of request processing. The use of
the fast and byte-addressable persistent memory (PM) has helped
mitigate the storage overhead of the server stack; yet, networking
is still a dominant factor in the end-to-end latency of request
processing. Emerging programmable network devices can reduce
network latency by moving parts of the applications’ compute
into the network (e.g., caching results for read requests); however,
for update requests, the client still has to stall on the server to
commit the updates, persistently.

In this work, we introduce in-network data persistence that
extends the data-persistence domain from servers to the network,
and present PMNet, a programmable data plane (e.g., switch
or NIC) with PM for persisting data in the network. PMNet
logs incoming update requests and acknowledges clients directly
without having them wait on the server to commit the request. In
case of a failure, the logged requests act as redo logs for the server
to recover. We implement PMNet on an FPGA and evaluate its
performance using common PM workloads, including key-value
stores and PM-backed applications. Our evaluation shows that
PMNet can improve the throughput of update requests by 4.31×
on average, and the 99th-percentile tail latency by 3.23×.

Index Terms—In-Network Processing, Programmable Network,
Switch, NIC, Data Center, Persistent Memory, Tail Latency, RPC

I. INTRODUCTION

The benefits of economy of scale and the emergence of cloud
computing have caused an increasing number of enterprises to
move their workloads to hyper-scale cloud data centers, with
an estimated annual growth of about 14.6% during the period
2017–2022 [76]. Today, most of the computation takes place
in these hyper-scale cloud data centers—performing more than
89% of the computation world-wide in 2018 [101].

These data centers host workloads ranging from time-
critical, interactive jobs (e.g., online data-intensive (OLDI)
workloads [11], RAMCloud [86, 87], and financial analy-
sis [57]) to long-running, batch jobs (e.g., MapReduce [31] and
machine-learning training [1]) with large memory footprints.
In most of these workloads, data is typically managed and
maintained in a persistent way across multiple servers, with
clients accessing and updating this data remotely over a
network of interconnected switches, using remote procedure
calls (RPCs). During each invocation of an RPC, the request is
processed by the client’s IO stack, the network of intermediate
switches, the server’s IO stack as well as the request handler
on the server. Thus, the latency of an RPC is significantly
affected by the processing time of each of these stages. As the
computation performed by modern workloads is dominated by
these RPCs, i.e., read and update requests, the time it takes to

access remote data is of major consideration when deploying
workloads on modern data centers [2, 3, 13, 82, 110].

These RPCs can be either synchronous or asynchronous.
Though, asynchronous RPCs can enable clients to continue
execution while updates are being processed at the remote
server; yet, building such applications is quite challenging,
especially “at scale, when a typical end-to-end application
can span multiple small closely interacting systems” [13]. In
contrast, applications using synchronous RPCs are easy to
write, tune, and debug—Google is known to strongly prefer a
synchronous programming model [25, 97]. Therefore, in this
paper, our aim is to improve the performance (specifically the
tail latency) for synchronous RPCs by minimizing the access
time to remote persistent data.

Recently, as programmable network devices become avail-
able [15], a trend is to offload application logic to those devices.
This way, a large fraction of the procedure, including server’s
network stack and processing time, is no longer handled by the
server but accelerated by those network devices. This newer
computation scheme is known as in-network compute, spanning
a wide range of applications, such as query processing [41,
63], key-value stores [51, 64, 70, 103], data aggregation [26,
93, 116], and even computational-intensive machine-learning
tasks [36, 66, 67].

Though promising, in-network computing mainly mitigates
the latency of computational tasks and requests that do not
change the server state (such as read queries); the data
persistence is still maintained by the servers, and update
requests still need to traverse the entire network and server’s
IO stack to complete the update. Therefore, as in the original
case, the client needs to wait for an entire round-trip time
(RTT)—for an acknowledgement from the server—before it
can proceed to the next step.

To minimize the request processing time on the servers, data
centers [10, 14] are deploying new persistent memory (PM)
technologies, such as Intel’s Optane [44] and NVDIMM [91].
Compared to traditional storage devices (e.g., SSD and HDD),
PM provides high-speed and direct, byte-addressable access
to persistent data, while bypassing OS indirections (e.g.,
file systems). PM reduces the server’s storage latency by
10∼50× [32, 49, 62], thereby enabling software systems (such
as databases [6, 48, 61, 75] and key-value stores [20, 109, 111])
to perform at much faster speeds. Even though the integration
of PM significantly reduces the request processing time at
individual servers, the network is still a dominant factor when
processing these requests in a data center—causing clients to
stall for a complete RTT. Moreover, as the network is a shared
resource, the contention for bandwidth, switch queues, and links



can lead to variable delays and long tail latencies [27]–[29, 38,
81, 88, 99, 100, 118]. We identify that the fundamental cause
of the limitations of in-network computing is that operations
are stateless, being unable to accelerate a stateful, persistent
operation on the server. On the other hand, persistent memory
in the server improves the performance of persistent updates
but still puts the network and server network-stack latency on
the critical path.

We found that it is possible to expose the persistent state to
the network and persist update requests in-network. Therefore,
we introduce the notion of in-network data persistence, which
enables a sub-RTT latency when processing update requests.
To expose data-persistence domain to the network, we log
updates in the network using persistent memory and send
acknowledgements to clients as soon as a request enters the
persistent domain. The update requests are then forwarded to
the server, but this way, the server processing happens off
the critical path. As the requests have entered a persistent
state before being processed by the server, the client can now
proceed before the server acknowledges.

In this work, we design and implement PMNet,1 a mech-
anism necessary to provide persistent logging support in
programmable network devices. However, designing PMNet
has many challenges. First, how can a network device track
requests and persistently maintain their state? Second, given
the requests have been persisted in the network, how can the
system recover after a failure? Third, how can PMNet maintain
the same application-level ordering guarantees with in-network
persistence? Next, we describe our key insights.

Persistent logging: PMNet uses a simple protocol to
ensure that updates are logged persistently in the network device
with sub-RTT latency. First, PMNet mirrors the incoming
update requests while they are traversing the network device.
It logs the update requests in its PM. Second, as the requests
have already entered a persistent domain of the network device,
PMNet immediately sends an acknowledgement to clients,
allowing them to move forward. Therefore, compared to the
original scenario, the latency is significantly reduced as the
client no longer needs to wait for the whole RTT. Third,
PMNet invalidates the logged entry upon reception of an
acknowledgement from the server, which indicates that the
server has completed the request.

System recovery: In case a failure happens in the persis-
tence domain (i.e., the network device and/or server), PMNet
needs to ensure that logged entries are reflected on the server.
When the system is up again, PMNet resends the logged
requests so that servers can redo them in the same order as
they were sent. As such, the server can recover to a consistent
state with the logged requests.

In-order delivery: PMNet always maintains the ordering
of the original system. As the logged updates are reflected
later on the server, one may think that a client will read
a stale value from the server. However, we observe that
oftentimes large-scale workloads optimize for independent

1PMNet is publicly available at https://pmnet.persistentmemory.org.

clients. For example, in a Twitter workload using Redis as
the backend [92], the clients update tweets and followers
without maintaining any order. Still, PMNet provides ordering
guarantees when there is a strict ordering requirement within
multiple clients. These workloads enforce application-level
ordering using synchronization primitives to ensure that only
one client can update a critical value. For example, a TPCC
workload [104] puts the modification of the stock price in a
critical section using locking primitives. PMNet treats the lock
operations in a critical section as regular read requests and
forwards them to the server. Therefore, the ordering is enforced
on the server and subsequent lock requests from other clients
fail on the server, but subsequent update requests from the
same client operate with sub-RTT latency by persisting these
update requests in the network device.

We implemented PMNet in an FPGA-based programmable
switch (PMNet-Switch) and a NIC (PMNet-NIC). Our evalua-
tion shows that both designs provide a significant benefit over
the baseline system. However, the latency difference between
PMNet-Switch and PMNet-NIC is negligible as the round-
trip time is dominated by the server network stack and the
server processing time. On top of PMNet, we further integrate
additional functionalities. (1) PMNet-Switch with caching: We
demonstrate that our logging mechanism for update requests
works coherently with a prior work that proposed to cache read
requests in a switch [51]. (2) PMNet-Switch with replication:
We develop an in-switch replication mechanism that builds
upon PMNet’s logging protocol. In summary, we make the
following contributions:
• We expose data persistence to the network to improve the

performance of update requests. We implement PMNet
using a programmable data-plane device, integrated with
a persistent memory that logs incomplete update requests.

• We adapt common PM workloads, including Intel’s
PMDK-based key-value stores [45], a PM-optimized Redis
database [48], Twitter [92], and TPCC [104] to PMNet. Our
evaluation shows that PMNet improves the throughput of
update requests by 4.31× and the 99th-percentile tail latency
by 3.23× in these workloads.

• We also demonstrate that PMNet improves read-caching and
state-replication latency by 3.36× and 5.88× respectively,
over traditional, baseline systems.

II. BACKGROUND AND MOTIVATION

In this section, we first discuss the performance bottlenecks
in performing update requests in persistent applications and
then describe our proposed solution.

A. Synchronous Programming Model

Data centers host a wide range of workloads, such as online
data-intensive (OLDI) workloads, RAMCloud, and financial
analytics [1, 11, 31, 57, 86, 87], where data is typically managed
in a persistent way through multiple servers, and accessed via
queries. If we categorize these requests, there are mainly two
types: synchronous and asynchronous. A synchronous request
guarantees its completion at the server by blocking the client
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Fig. 1: Round-trip time (RTT) of a single request.

until the server responds. In comparison, an asynchronous
request lets the client proceed immediately while the request
is being delivered and processed at the server. However,
the client risks losing data in the face of common failures,
such as network packet loss. When such failure happens, the
application needs to ensure that the clients and the servers
remain in-sync—complicating the design and development of
the application. Therefore, programmers usually prefer the
synchronous programming model [13, 25, 80, 97].

B. Mitigation of the Synchronous Overhead

Although the synchronous model alleviates the programming
burdens, it places the entire query RTT on the critical path
of the application, as future requests are blocked until the
in-flight request has been processed by the server. Figure 1
demonstrates the steps involved in query processing, including
the client’s network stack, the network latency, the server’s
network stack, and the server’s request processing. The dashed
arrows demonstrate the RTT of processing a single request.
Further breakdown in Figure 2 shows that server-side latency,
including the server’s network stack (in the kernel) and
request processing time (in the user-space), makes up the
majority of the overhead (70% on average). To mitigate the
synchronous overhead, one of the promising solutions in
the literature is to offload tasks to the network. By placing
computational devices—such as programmable switches [9] and
SmartNICs [112]—on the network path, a large portion of the
server’s processing and network stack latency can be eliminated.
Examples of in-network computing include load balancing [54,
79], congestion control [95, 96] and packet scheduling [40,
98], query processing [41, 63], key-value stores [51, 64, 70,
103], and machine-learning acceleration [36, 66, 67].

However, in-network compute only handles stateless requests
that do not change the persistent state. In case of an update
request, the communication and processing overhead remains.
Fortunately, recent advancement in memory technology pro-
vides an alternative, high-performance storage system, persis-
tent memory (PM) [44]. By managing persistent data on PM,
the server can perform update requests more efficiently and
reduce the server-processing latency. For example, databases
and key-value stores [6, 20, 48, 61, 75, 109, 111], and PM-
optimized file systems [34, 59, 60, 74, 106, 108, 114, 115]
optimize their data management to take advantage of PM’s high
performance. Despite these improvements, the network stack
and the processing time remain on the critical path. Even with
an optimized network stack, such as using libVMA [77] that
enables applications to bypass the server’s network stack, the
server-processing time is still a major overhead (we evaluate
an optimized network stack in Section VI-B7).
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Fig. 2: Latency breakdown of an update request.

In this work, we ask the following question: how can we
move the server’s network stack and processing time off the
critical path and process the client requests in sub-RTT? A
promising solution is to log and persist the update requests
ahead of time before they enter the server stack and processing
time. A dedicated logging module can bypass the majority of
system overhead. Unfortunately, a dedicated software module
can introduce additional CPU and memory utilization (evaluated
in Section VI-B2), and a dedicated hardware module needs
a redesign of the CPU architecture, making fast deployment
challenging. The trend in data centers is to move dedicated
logic into NICs and switches [26, 36, 41, 51, 63, 64, 66, 67,
70, 93, 103, 116]. This method is effective in handling network
traffic, without putting extra load on the server. Following this
trend, our goal is to design and prototype an efficient logging
mechanism using programmable network devices.

C. In-Network Data Persistence

For data to become persistent in the network, we need
to extend the data-persistence domain from within servers
to the network. By maintaining the persistent state of on-
going requests in the network, an update request can become
equivalently persistent before having been processed by the
server. In case of a failure on the server, the already persisted
requests can be resent from network devices and re-applied
to the server for recovery. As the solid arrows in Figure 1
demonstrate, clients no longer need to wait for the entire RTT
for servers to process the requests and reach a persistent state.
Instead, they can proceed once the requests have entered the
persistence domain of the network. Consequently, the entire
server-side latency (as pointed out in Figure 2), including the
request handler’s processing time and the network stack latency,
can be placed off the critical path. Therefore, persisting these
requests in the network can significantly improve performance
by taking the server off the critical path.

III. HIGH-LEVEL IDEAS

We present PMNet, a PM-integrated programmable network
device that realizes in-network data persistence. By keeping
a persistent copy of in-flight requests on the network device,
the update will end up in a persistent state before having been
received and processed by the server. In case a server fails (e.g.,
due to a power outage or kernel crash), the persistent copy of
the request can act as a redo log for the in-flight requests when
the server recovers from failure. At a high level, the design
and implementation of PMNet have three major challenges:
(1) How can PMNet move the network and server processing
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Fig. 3: Request logging and system recovery in PMNet.

time off the critical path by logging the requests? (2) How can
the system recover using the logged requests? (3) How can the
existing client and server applications maintain ordering after
having PMNet integrated? Next, we describe the high-level
ideas of PMNet that address these challenges.

A. Persistent Logging

With the integration of PM, PMNet can maintain a copy of
in-the-flight update requests in PM, to serve as a redo log for
the server. This way, the request reaches a persistent state before
it has been processed by the server (Figure 1). PMNet then
sends the acknowledgement of the request to the client once
it has been persisted in the network device’s PM, rather than
waiting for the server’s acknowledgement. Figure 3 shows the
workflow of the request logging procedure: Upon receiving an
update request, PMNet writes it to the integrated PM (step Ê-
Ë). While the request is being written to PM, PMNet forwards
it to the destination server (step Ì). After the request becomes
persistent, PMNet sends an acknowledgement (PMNet-ACK)
to the client, indicating that this request has entered a persistent
state (step Í). When the server has actually processed the
request, it acknowledges (server-ACK) PMNet to invalidate
its copy and reclaim the log entry for future use (step Î).
On the client-side, upon receiving an acknowledgement from
PMNet, the client proceeds without waiting for the completion
of the request at the server (details in Section IV-B). PMNet
can work as a switch as well as a NIC, which we refer to as
PMNet-Switch and PMNet-NIC, respectively.

B. System Recovery

The next challenge is to recover the server after a failure.
Figure 3 shows the recovery procedure. Upon detection of a
server failure (e.g., through heartbeat signals), PMNet reads
the logged requests from the device’s PM (step Ï) and resends
them to the server (step Ð). PMNet ensures that the server
commits the resend requests in the original order by adding an
extra sequence number in the header (details in Section IV-E).
Once the server has committed a request, it notifies PMNet to
invalidate the log entry (step Ñ). Besides this sequence number,
the update requests need additional information to ensure
correct in-network logging and recovery. PMNet encodes this
information as a new PMNet header (details in Section IV-A) to
existing network protocols (e.g., IP or VXLAN), and provides
software support for the client and server to process this
encoding with minimum changes to the source code.

C. In-order Delivery

PMNet guarantees the same ordering as the traditional,
baseline systems. We already discussed that PMNet maintains
ordering within a client by keeping additional sequence

  Client 1
  uid = getUID()
  usr.name=name
  usr.pass=pass
  setUsr(uid,usr)

1
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3
4

Client 2
uid = getUID()
usr.name=name
usr.pass=pass
setUsr(uid,usr)

Time
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➊ getUID
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Fig. 4: No ordering in a Twitter workload [92].
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unlock();
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Fig. 5: Application-level ordering in a TPCC workload [104].

information in the header of the packets from each client.
However, one may wonder how PMNet ensures the ordering
between multiple clients. Can another client read the up-to-
date state from the server, while the update is being logged in
PMNet and not yet committed to the server?

PMNet targets the common cases, where the majority of
client-server connections are independent. This is unsurprising
because the RTT between a client and server is as high
as tens of µs—having dependencies (and synchronization)
with other clients can inflate the end-to-end latency of re-
quests even further. Therefore, large-scale workloads typically
mitigate dependencies and optimize for independent clients.
For example, different tasks in a microservice use separate
storage backends without dependencies with others [38, 100],
worker nodes in distributed machine-learning systems send
new weights to a parameter server without synchronizing
with other workers [1, 30], and client-independent databases,
such as Memcached and Redis, are commonly used as service
backends [7, 89]. Figure 4 demonstrates two update requests
to a shared variable lastUID in the Twitter workload [92].
There is no ordering constraint among clients, and each client
independently executes the getUID function (line 1) and uses
that UID for consecutive requests.

However, in rare cases where ordering must be enforced
among multiple clients—i.e., one client cannot update the
server until another completes—the client needs to make
sure the request has actually been processed by the server
before making any forward progress. These workloads typically
use synchronization primitives to ensure the ordering at the
application level. The client uses an update request to access
the synchronization primitive on the server and acquire the
lock on the critical section; other clients are blocked from
entering the critical section, thus enforcing an ordering among
clients. Figure 5 shows this synchronization scheme in the
TPCC workload [104], where PMNet directly forwards the
locking requests to the server and only client 1 can access the
critical section. And, subsequent update requests from client 1
can still benefit from PMNet. As lock requests are forwarded
to the server, the ordering of lock-acquire/release is enforced.
Because lock requests are infrequent, the majority of requests
can be logged by PMNet. In our experiment, most workloads
are lock-free. Only 13.7% of the requests in the TPCC workload
access the locking primitive (i.e., bypass PMNet).
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IV. PMNET DESIGN

So far, we have introduced the high-level ideas of PMNet,
that extend the persistence domain from servers to the network
by logging in-flight update queries in the network devices’
PMs, and redo them in the event of failures. This way, PMNet
effectively moves server-stack overhead off the critical path of
request processing.

PMNet realizes in-network data persistence by augmenting
programmable network devices (e.g., switches and NICs) with
PM, as the architecture overview in Figure 6 shows. To have
PMNet fully functioning end-to-end, from the client-server
application to the hardware implementation, we introduce
four major aspects in this section. First, we introduce PMNet
protocol for update requests that can benefit from in-network
data persistence, which encodes metadata that is necessary for
logging and recovery into a PMNet header (Section IV-A).
Second, we describe the request processing procedure of
PMNet, according to the PMNet protocol (Section IV-B). Third,
based on the design of PMNet, we further introduce two
use-cases of PMNet. One case that integrates PMNet into
a replication system (Section IV-C), and another case that
implements a read cache on top of PMNet’s logs (Section IV-D).
Finally, having with all the details described, we illustrate the
recoverability of a PMNet-based system (Section IV-E).

A. PMNet Protocol

We now describe the PMNet protocol, including its packet
header, delivery method, and ordering guarantees for queries.

1) Header format: The PMNet header is placed in the
application layer of each network packet (i.e., L4) (Figure 8).
A PMNet header consists of the following fields:
• Type (8 bits) differentiates the type of PMNet’s requests

(details in IV-B1).
• SessionID (16 bits) keeps track of sessions a client sends

requests from and differentiates connections among clients.
• SeqNum (32 bits) tracks the order of packets sent over a

given session, such that the server can process the queries in
the original order. Furthermore, the latest SeqNum informs
PMNet to avoid redoing already completed queries during
the recovery (Section IV-E).

• HashVal (32 bits) is a CRC-32 hash of the entire header
that is computed by the sender’s network stack. The PMNet
uses this hash value to index a packet in the PM of PMNet.
2) Delivery method: The PMNet protocol is built upon UDP,

similar to other in-network compute works [50, 65, 67, 103].
To differentiate from other network traffic, PMNet reserves
specific UDP ports (range: 51000–52000) and encodes PMNet

Client Server
1 2 2 1

(a)

Fix OrderPacket SeqNum
2 1

Network

Packets Reordered

PMNet

❶ ❷ ❸Send

Client Server
1 2 1 3

(b)

Detect packet loss

Network

Packet “2” Lost

PMNet

❶ ❷
❸Send

3
1 3x

Retransmission ❹

Packet SeqNum

Client Server

21

(c)

Fix Order

Resend 
Logged Packets

PMNet
❷

❸

3
❶ Server Failure

21 3

Fig. 7: Per-client packet ordering guarantee in three cases:
(a) reordered packets, (b) packet loss, and (c) failure.

header into the UDP packet. In case an application originally
uses TCP, PMNet’s software library converts TCP packets to
UDP packets while maintaining a reliable delivery guarantee of
TCP (similar to [96]). We present how PMNet protocol ensures
the packet ordering and integrity guarantees in Section IV-A4.

3) MTU-sized packets: PMNet obtains the packet size
from the UDP header. Though a UDP packet typically has a
maximum transmission unit (MTU) of 1.5 kB, a query can be
larger than this limit. PMNet’s software library transparently
divides the queries larger than MTU into smaller packets and
uses a sequence number (SeqNum) to maintain packet order.
PMNet handles MTU-sized packets by sending a per-packet
PMNet-ACK to the client once each packet has been logged
in PMNet. And, the client needs to collect all PMNet-ACK’s
to make sure the corresponding update request has been
completely logged in PMNet. The PMNet’s software library
also tracks the number of PMNet-ACK’s in a similar way.

4) Ordering guarantees: As UDP does not guarantee packet
ordering, PMNet protocol implements such ordering for servers
to execute queries from the same client in the original order.
We discuss the ordering guarantee in three scenarios. (1) During
normal execution: Figure 7a demonstrates a scenario where
the client first sends packets in the original order (step Ê),
and during network transmission, some packets are reordered
(step Ë). On detection of out-of-order packets, the server’s
PMNet library corrects the order based on SeqNum of each
packet (step Ì). (2) On detection of a packet loss: Figure 7b
demonstrates a scenario where the client sends a series of
packets (step Ê), but some packets are lost (packet-#2 in this
example) during network transmission (step Ë). The server’s
PMNet library detects nonconsecutive SeqNum (step Ì) and
requests for retransmission (step Í). Section IV-B describes
more details about retransmission. (3) During failure recovery:
Figure 7c demonstrates a scenario where the server fails
(step Ê) and PMNet retransmits the logged packets to the
server for recovery (step Ë). Similar to scenario (1), the server
reorders the packets on reception (step Ì). In conclusion,
although the network may reorder or lose packets, PMNet
protocol guarantees their ordering and delivery.2

2Note that handling reordering at the network level is rare as datacenter
networks typically use flow-consistent load balancing (e.g., ECMP [53]).
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Multi-client ordering: PMNet enforces multi-client or-
dering at the application level by forwarding synchronization
requests directly to the server (described in Section III-C).
Doing so allows the server to enforce ordering across critical
sections of the application code, while the code within the
critical sections can still benefit from PMNet’s logging.

B. PMNet Request Processing and Log Management

1) Packet handling: In PMNet, a match-action table (MAT)
pipeline (Figure 6) handles the following types of PMNet
packets, distinguished via the “Type” field, along with other
non-PMNet packets.
• Update requests from the clients (update-req). PMNet

needs to maintain the persistent state of these queries in
order to recover. Therefore, upon reception of a packet that
belongs to an update request, PMNet immediately forwards
the packet to the destination server, and in the meantime,
logs the packet in the persistent memory. The HashVal in
the PMNet header serves as the index to the log entry. Once
the whole packet has been persisted to the network device’s
PM, PMNet sends a PMNet-ACK back to the client, as
the packet has reached a persistent state. Note that in cases
where the device PM is full or the HashVal of the packet
collides with an existing entry, PMNet directly forwards
the packet to the destination server without logging it (or
acknowledging the client).

• Bypass request from the client (bypass-req). For
purposes such as read request and synchronization, where
the client does not need to receive an early acknowledgement
from PMNet, the client sets the packet type to bypass-req.
PMNet directly forwards it to the destination without logging.
As a result, these packets do not enter a persistent state until
processed by the server.

• ACK from another PMNet (PMNet-ACK). In a system
with multiple PMNets, a PMNet may receive a PMNet-ACK
from another PMNet. In this case, PMNet directly forwards
the packet along its path to the destination.

• ACK from a server (server-ACK). Upon reception of a
server-ACK, PMNet looks up the request log with the
HashVal in the packet. If the request log hits, PMNet
forwards this server-ACK to the destination (the next
PMNet in this route may log the request).

• Retransmission request from a server (Retrans). In
case the server detects any packet loss, it sends a Retrans
request to the client, going through PMNet. If PMNet has

the requested packet logged, PMNet directly sends it to the
server and drops this Retrans request. Otherwise, PMNet
forwards this Retrans request directly to the target client.

• Non-PMNet packets. As PMNet also serves as a regular
network device, it also handles non-PMNet packets by
directly forwarding them to the destination.
2) MAT pipeline workflow: PMNet implements the MAT

pipeline for packet processing, as shown in Figure 8. The
pipeline contains three stages: ingress, PM-access, and egress.
The ingress pipeline first checks whether this packet is a PMNet
packet based on its port number in the UDP header (step Ê);
non-PMNet packets are directly forwarded to the destination
port. Second, for the remaining PMNet packets, it checks the
type of the packet based on the Type field in the header
(step Ë), and forwards PMNet-ACK packets to the destination.
The PM-access stage operates on the request logs. It creates a
log upon receiving an update-req packet (step Ì), removes
it upon a server-ACK packet (step Í), and looks up a log
upon a Retrans packet (step Î), by using HashAddr as the
index. The egress stage processes the outgoing packets based on
the outcome of the (log) lookup. For update-req packets, it
first forwards all of them to the destination server (step Ð); and
for those that can be logged in its PM, it additionally generates
and sends a PMNet-ACK to the client (step Ï). For Retrans
packets, if the log entry is present, the egress pipeline generates
and resends the requested packet to the server; otherwise, it
forwards this Retrans to the destination client.

During the PM-access stage, PMNet manages log entries in
its PM through a DMA engine (i.e., to add/remove/read a log
entry). Different from the rest of the MAT pipeline, the PM
access stage can suffer from the longer PM access latencies.
To prevent blocking incoming packets, PMNet maintains log
queues (separate queues for reads and writes) that buffer PM
access requests (as shown in Figure 6). This way, PMNet can
handle all incoming packets at line-rate (Section VI-B).

C. PMNet Replication

Replication is a common fault-tolerance mechanism that
maintains multiple copies of the same data block across various
storage servers in a distributed system [12, 17, 21, 55]. In case
one server fails, the other can be used to recover the corrupted
data. To enable fault-tolerance, an update request must commit
to all the replication servers. PMNet can accelerate these
fault-tolerance systems, further, by replicating data using in-
network PMs. Figure 9a demonstrates a scheme where the
server replicates data. Accordingly, we place two switches in
series to maintain two copies of logs as well.

An update request is processed in the following steps:
The client sends an update request (step Ê), and the first
PMNet switch (#1) logs the request (step Ë) and sends a
PMNet-ACK (#1) (step Ì). Then, the second PMNet switch
(#2) receives the forwarded request, performs logging (step Í),
and sends a second PMNet-ACK (#2) (step Î). On the client
side, it continues processing only after it has received both
PMNet-ACK (#1) and (#2). On the server side, the primary
server receives the update request and process it (step Ï).
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Afterward, it sends the updated data to the replication server.
Only after replication completes (step Ð), the primary server
sends a server-ACK to invalidate both logs in the two PMNet
switches (step Ñ). Even though such in-network replication
requires all switches to persist the log prior to sending an
acknowledgement, the latencies for persisting data at each
switch are overlapped. Figure 9b shows the latency benefits
of this overlap in the replication procedure for two switches
(evaluation in Section VI-B5).

D. PMNet Read Caching

Prior works have used programmable switches as a cache
for key-value stores [51, 70, 103] but they do not maintain a
persistent state of the data cache and cannot mitigate RTT for
update requests. To serve both read and update requests, we
add a read cache on top of PMNet’s persistent log. With read
caching enabled, PMNet is implemented as the server’s ToR
switch, similar to the prior works on in-network read cache,
to simplify consistency issues [51]. It maintains a persistent
key-value cache that logs update requests and responses to read
requests. Figure 10 shows this procedure. When a read request
arrives at PMNet (step Ê), it looks up the cache. If the request
is a hit in the cache (step Ë), PMNet sends a cache-response
to serve the read (step Ì). In case of a miss, the read request
is forwarded to the server as normal (step Í), and the response
is cached in PMNet when the server replies (step Î). On the
other hand, an update request is first logged in PMNet (step
Ð) to move server processing off the critical path (step Ñ). In
case the key in the update request is a hit to the cache (i.e.,
has been cached already), it updates the cache to maintain
consistency (step Ð).

Figure 11 describes a state diagram, where each entry in
PMNet has four states: (1) Invalid: the entry is empty
(initial). (2) Stale: the entry is not up-to-date when there is
an in-the-flight update to the same key (3) Persisted: the
request logged by this entry has been persisted on the server,
and (4) Pending: the request has been logged by PMNet
but not persisted by the server. When the state is Pending
or Persisted, the entry can serve for read cache. Here are
the state transitions. T1: Upon receiving an update-req
from the client, PMNet logs the request. As the server has not

Fig. 11: A state diagram for PMNet with integrated read cache.
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Fig. 12: Intermittent failure scenarios.

persisted it, the state is now Pending. T2: After receiving a
server-ack, PMNet is notified that the server has persisted
the request. Thus, the status becomes Persisted. T3: If
the same entry (indexed by the key) is updated again (via an
update-req), PMNet directly bypasses this request and the
state goes back to Pending. T4: When an entry is Pending
but receives another update-req, the state becomes Stale
as the server will be updated with a new value. T5: A Stale
entry remains Stale, after getting another update-req. T6:
Once a Stale entry receives a server-ACK, it becomes
Invalid as its prior update-req has been persisted.

E. PMNet Failure Recovery

Our work focuses on a system with client-server architecture
located in a modern data center. Here, we consider both
intermittent failures (such as power outage, software bug and
other hardware failures that cause the system to temporarily
become unavailable) and permanent hardware failures that are
handled via replication (details in Section IV-C).

1) Intermittent failures: In this case, all hardware regains
their functionality after the failure ends. However, data that is
outside the persistent domain is lost. To ensure data integrity,
PMNet ensures that accepted requests are safely stored in the
persistent domain. We categorize such failures into three cases.
• PMNet fails before receiving the request from the client

(during step Ê in Figure 12). In this case, as the packet has
not been accepted by either PMNet or the server, the client
is not acknowledged. Therefore, the client will continue to
be stalled by the in-flight request and simply needs to resend
the request after timeout (or during recovery).

• PMNet fails after accepting a request but before a
server receives the forwarded request (during step Ì in
Figure 12). We discuss two cases. (1) The PMNet-ACK
was sent to the client before failure (step Ë is complete).
In this scenario, the client has assumed the packet has been
processed but the server has not processed it, in fact. During
recovery, the server polls PMNet for logged requests with
the sequence number starting from the last packet it receives.
Then, the server applies logged requests in the same order as
they were sent by the client. Note, PMNet itself is agnostic
of the packet ordering for better performance, but the server
uses SeqNum to maintain the order of requests. (2) The
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PMNet-ACK was not sent to the client before the failure
(step Ë is incomplete). In this scenario, the client has not
received the acknowledgement and, therefore, it will be
stalling on the current request. After the client times out, it
will resend the request again.

• PMNet fails before receiving the server-ACK (during
step Í in Figure 12). PMNet first resends the logged requests
to the server. Upon reception of the resent request packets,
the server checks the SeqNum of each packet. As the server
has processed the request, the latest SeqNum is greater than
that in the resent request and, therefore, the server drops these
requests and sends a make-up server-ACK to invalidate
the log entries in PMNet.
2) Permanent failures: In this type of failure, the hardware

that stores persistent data (PMNet or server) cannot be
recovered. Such failures are handled by replicating data in
the persistent domain across multiple devices. We further
categorized permanent failures into three cases.
• A PMNet fails permanently after accepting a request

but before the server receives the forwarded request.
For PMNet to handle permanent failure, the update request
must persist in all PMNet all the way to the server before it
is accepted (as in Section IV-C). We discuss two cases.
(1) PMNet #2 fails before both PMNet devices have
accepted the request (step Ê in Figure 13). Because the
client has not received both PMNet-ACK’s to satisfy the
replication requirement, it will be stalling on the current
request until it times out3 and resends the request (step Ë in
Figure 13). (2) PMNet #2 fails after both PMNet devices
have accepted the request and send PMNet-ACK (step Ì
in Figure 13). During recovery, the server polls PMNet for
the logged requests. Because all PMNet devices have logged
the request, any surviving PMNet can retransmit the request
to the server.

• Server replication system fails before sending
server-ACK. In a replication system, the primary
server sends Server-ACK only after it has committed
the update in all replicas. Thus, when a replication server
fails (step Í in Figure 13), the server will not send
server-ACK to invalidate the logged requests in PMNet.
Eventually, when PMNet’s log entries are full, PMNet
forwards newer requests directly to the server. However,
those requests will not be processed by the failing replica
and the client will eventually timeout3 (step Î in Figure 13).
All the in-flight requests are now logged in PMNet with
equivalent replication strength (the same number of PMNet
devices as the replicas). Once the replication system is up,
the primary server sends Retrans (step Ï in Figure 13) to

3The timeout value is 2× 99th-percentile RTT, which is 700 µs.

❸

❶

❷

Fig. 14: FPGA platform for PMNet implementation.

get the logged requests from PMNet. And, the retransmitted
requests will be processed by the server in-order based on
the sequence number. Note that these systems typically
monitor servers’ status using heartbeats. Therefore, the
client will be notified as soon as a replica fails—the client
would not need to wait until it times out.

3) Failure of other components: When components outside
of the persistence domain fail, such as the client or other non-
persistent network devices, the system follows the original
procedure for recovery. The recovery procedure does not change
as the persistence guarantee of those devices remains the same.

V. PMNET IMPLEMENTATION

A. Hardware Implementation

We express PMNet’s processing pipeline in the P4 lan-
guage [16]. We choose Xilinx UltraScale+ VCU118 platform
(Figure 14) as the hardware for the programmable network
device and maintain the request logs in its 2GB on-board
DRAM (labeled as component Ê). The DRAM write latency
in the FPGA is 273 ns (due the slow DMA engine on the
FPGA) which is close to Optane PM’s write latency [107].
We adapt the open-source code from NetFPGA-SUME (with
10G Ethernet MAC) [84] to our UltraScale+ platform and
integrate PMNet into it. The network interface is labeled as
component Ë. The whole design uses 13% of LUT, 19% of
BRAM, and 31% of IO resources of the FPGA. The FPGA chip
is labeled as component Ì. We use a Li-ion battery module
to back the device during power failure.

Design choices: The in-network PM needs to log all the
in-flight update requests. In our evaluation, the 99th-percentile
RTT of update requests is 350 µs. If we conservatively take
500 µs as the maximum RTT and 10 Gbps as the bandwidth,
the bandwidth-delay product (BDP) is:

BDPNet = RTT ×BW = 500 ·10−6 ×10 ·109 ≈ 5Mbits. (1)

Our FPGA board has sufficient memory capacity to log all
these on-going update requests. Because of the slower PM
access latency, we buffer the accesses to the in-network PM on
the PMNet device (switch or NIC) to process packets at a line
rate. The required buffer size also follows a BDP calculation
where the delay equals to the memory-access latency.

BDPPM = PMLatency×BW = 100 ·10−9 ×10 ·109 ≈ 1kbits. (2)
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TABLE I: PMNet software interface.

Client Software Interface
PMNet_send_update() Send an update-req to server
PMNet_bypass() Send a bypass-req to server
PMNet_start_session() Start a session
PMNet_end_session() End a session

Server Software Interface
PMNet_recv() Receive requests from client
PMNet_ack() Send ACK to PMNet

TABLE II: System configuration.

Server Configuration
CPU Intel Cascade Lake, 2.1GHz, 20 cores
DRAM 6×32GB DDR4, 2666MT/s

PM 2×128GB Intel DCPMM, Interleaved, 2-1-1 Config,
App Direct Mode, Mounted as EXT4-DAX

NIC Mellanox ConnectX-3 MCX314A

Client Configuration
CPU Intel Haswell, 3.6GHz, 6 cores
DRAM 4×16GB DDR4, 2133MT/s
NIC Mellanox ConnectX-3 MCX314A

Software System
OS Ubuntu 19.10, Linux kernel v5.3.0
Tools & Libs gcc/g++-9.2, PMDK-1.8, daxctl/ndctl-65 (server only)

We conservatively use 4 KB of SRAM as the queue size for
logging both reads and writes to PM. Section VII discusses
support for even higher network bandwidth with PMNet.

B. Software Implementation

We develop an easy-to-use software interface that allows
programmers to adapt existing workloads to a PMNet system
(PMNet_interface.h). Table I lists the interface functions.
Programmers need to overwrite the existing send and receive
functions of the system’s socket interface with the PMNet
version. Then, the PMNet library operates on these functions
and encapsulates payload in PMNet-compatible formats. In
addition, PMNet library serves two major purposes. First, it
accepts incoming packets from PMNet to mitigate the RTT
for the client (Section IV-B). Second, it maintains the ordering
and integrity of PMNet packets for the server (Section IV-A4).

VI. EVALUATION

A. Methodology

1) System setup: We evaluate PMNet using a testbed,
described in Table II. The server is equipped with Intel’s DC
Persistent Memory [44] that are mounted in DAX-FS mode
for workloads to directly manage PM. The clients contain
normal DRAMs on the machines and send requests to the
server for persistent data access. Both the server and clients
use Mellanox NICs for network connection. In total, we have 4
client machines, each running up to 16 client instances (64 in
total), and 3 Xilinx UltraScale+ FPGAs that are programmed
as PMNet-NICs/Switches. In the PMNet-Switch configuration,
the client machines are connected to a top-of-the-rack PMNet
switch (Section V-A). Due to the limited number of Ethernet
ports on the FPGA board, we place a regular switch (with sub-
microsecond latency) in the middle of clients and the FPGA to
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Fig. 15: Update latency of an ideal request handler with variable
request sizes.

merge their traffic. In the PMNet-NIC configuration, the client
machines are connected to a regular switch directly; for the
server, the FPGA is placed as a bump-in-the-wire between the
server’s NIC and the ToR switch, similar to recent Microsoft’s
SmartNIC setup [35, 36].

2) Evaluated workloads: We evaluate workloads from
Intel’s PMDK library [45] and a PM-optimized version of Redis
from Intel [48]. We use a YCSB-like client [24] to generate
and send read/update requests to the server. We also evaluate
the performance of PMNet with two real workloads: a Twitter
workload based on the Twitter Clone tutorial [92] and the online
transaction processing benchmark, TPCC [104]. All server
workloads manage persistent data in PM directly through the
DAX-FS support. To support these workloads, we modified 11
and 7 lines of code in Redis and PMDK workloads, respectively.
The payload of each read/update request is 100 Bytes, by
default, unless specified otherwise. During evaluation, we skip
the first 10k (warm-up) requests for more precise results.

3) Baseline protocol: We implement the driver program
for PMDK workloads (B-Tree, C-Tree, RB-Tree, Hashmap,
and Skip List) using UDP. Therefore, both the baseline and
PMNet of these workloads use UDP. Redis, Twitter, and
TPCC are originally based on TCP. Although UDP is faster,
adapting them to UDP introduces a 9% slowdown due to the
conversion overhead. Thus, we keep the original TCP-based
communication as the baseline. This way, all the baselines are
evaluated with their best-performing protocols.

4) Design points: We test PMNet under three system
configurations for comparison.
• PMNet-Switch: A system with PMNet in the ToR switch

of the server rack.
• PMNet-NIC: A system with PMNet as server’s NIC.
• Client-Server: A baseline system which forwards all net-

work packets to the destination.

B. Evaluation Results

1) Latency of microbenchmarks: We start with evaluating
the raw latency and bandwidth of PMNet. In a practical system,
the server-processing time can be the bottleneck. Therefore, we
implement a microbenchmark with an ideal request handler on
the server-side that acknowledges the client upon reception of
the request, without processing it. Hence, the network latency
becomes the primary bottleneck.

We first evaluate the latency benefit of PMNet. Figure 15
shows the round-trip time latency of PMNet-Switch and PMNet-
NIC as we vary the payload size from 50B to 1000B, using a
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Fig. 17: Alternative designs: (a) client-side logging with
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single client. We make two observations from this figure. First,
PMNet-Switch and PMNet-NIC provide 2.83× and 2.90×
speedup, respectively, over the Client-Server with a payload
size of 50B. However, the benefit decreases with larger payloads
as the payload processing time goes up in the network device.
For example, both PMNet-Switch and PMNet-NIC provide
around 2.19× speedup compared to the Client-Server with
1000B payloads. Second, we observe that the difference in
absolute latency between PMNet-Switch and PMNet-NIC is
almost negligible (under 1 µs) as wire latency is low and the
most benefit comes from moving the server processing and
network latency off the critical path.

Next, we stress test the bandwidth using an ideal server-side
request handler. On the client-side, we scale the number of
client instances and keep sending 1000B requests to the server
to saturate the bandwidth. Figure 16 displays stress testing
results. First, both PMNet configurations and the Client-Server
follow a similar trend where the latency remains the same when
the total bandwidth is low, and there is a spike in latency when
the bandwidth reaches the physical limit at 10 Gbps. Second,
when the bandwidth is less than 10 Gbps, both PMNet-Switch
and PMNet-NIC consistently have better latency than the Client-
Server as they move the server off the critical path. As both
PMNet configurations are equally effective in terms of update
request response time and maximum bandwidth, in the next
sections, we discuss PMNet performance using switches only.

2) Comparison with alternative designs: We compare
PMNet with two alternative designs (request payload is 100B).
To maximize the performance difference due to communication,
we use the aforementioned microbenchmark (Section VI-B1).

Client-side logging: (Figure 17a) locally logs the request
and then lets the client proceeds (step a1). The client then
forwards the request (step a2), such that the server’s network
stack and processing time are off the critical path. We
implement client-side logging in a separate, dedicated software
process, following a client-side persistent logging (caching)
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design [4]. The application directly overwrites the original
socket interface to send logs to the client-side logger.

Server-side logging: (Figure 17b) logs the request on the
server upon reception (step b1) and immediately notifies the
client (step b2), in order to move the server’s processing time
off the critical path. We implement the server-side logging
following a persistent write logging (caching) design [56].

Figure 18 compares the latencies in these two designs.
First, without replication, client-side logging is faster than
PMNet as it does not go through the client’s network stack
(10.4 µs compared to PMNet’s 21.5 µs). Whereas, server-side
logging is much slower than PMNet because a large fraction
of the server network latency remains on the critical path
(47.97 µs). Second, with 3-way replication enabled, client-side
logging becomes inefficient (41.61 µs) because it needs to
communicate with other clients to replicate the logs. Similarly,
server-side logging latency also increases significantly due to
communication (94.02 µs). In comparison, PMNet consistently
performs well even with replication (22.8 µs and 21.5 µs with
and without replication), as the communication latency among
replicas is off the critical path.

3) Application performance: Prior works have shown that
the update/read ratio varies [7, 18]. Figure 19 shows the
normalized throughput in real-world applications with PMNet,
when we vary the update ratio from 100% to 25%. We make
two observations: First, PMNet provides, on average, 4.31×
speedup over the Client-Server with 100% update requests.
Second, as the ratio of read requests increases, the throughput
improvements from PMNet decrease. This trend is expected as
PMNet focuses on update requests. We show the performance
benefit of PMNet with read caching in the next section.

4) PMNet with read caching: Our read-cache implementa-
tion is based on “key” lookups using the GET/SET interface in
the key-value store workloads. As a result, this experiment only
includes the key-value store based workloads from PMDK [45]
and Redis [48], and excludes workloads with complex queries,
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such as Twitter [92] and TPCC [104]. Figure 20a and 20b
show the cumulative distribution function (CDF) of the latency
with 100% and 50% update requests, respectively. We make
three observations from this figure. First, the average latency
of PMNet with caching is 3.36× lower than the Client-Server
system. Second, when 50% of requests are updates, the latency
of PMNet without caching has a noticeable transition point at
the 50th-percentile (blue lines in Figure 20b), where latencies
become close to the Client-Server system afterward. This
happens because only half of the requests are updates and
have been optimized by PMNet. In comparison, when 100% of
the requests are updates (Figure 20a), the latency does not drop
and provides 3.23× better tail latency than the Client-Server
design. On the other hand, when caching is integrated into
PMNet, the latency benefit does not stop at 50th-percentile
but keeps continuing (green lines in Figure 20b)—as it serves
all update requests and most read requests (cache hits) with a
sub-RTT latency. Third, workloads with a higher hit rate (e.g.,
Redis) significantly benefit from the 99th-percentile latency
with caching. We conclude that, with the integration of read
caching, PMNet effectively reduces the latency of both update
and read requests.

5) PMNet with replication: The replication scheme con-
nects three PMNet switches in series to implement a 3-way
replication in the network. Figure 21 shows the benefit of
in-network replication compared to a Client-Server system
that performs replication on the server-side. We make two
observations. First, PMNet with replication provides 5.88×
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better performance than server-side replication on average.
Second, the overhead due to in-switch replication is low, as
the latency of persisting logs is overlapped in our mechanism.
The 3-way replication introduces 16% overhead over a PMNet
system that only logs the updates once.

6) Recovering from server failures: We evaluate how a
PMNet system recovers from server failures. To mimic failure,
we manually cut off the power of the server and let PMNet
resend logged requests after power has been restored. For each
workload, we saturate the network bandwidth to create the
worst-case scenario where PMNet has the maximum number
of requests logged. On average, it takes 67 µs to resend a
single request and 4.4 seconds to resend all pending requests
in the log. Even in the worst case, the entire recovery procedure
(resend + application recovery) only takes 9.3 seconds which is
a small fraction of the server’s 2∼3-minute boot-up time [43].

7) PMNet with an optimized network stack: The latency
breakdown in Figure 2 (Section II-C) shows the client-
and server-side latency consists of both network stack and
processing time. With an optimized network stack, the network
stack overhead can be significantly reduced. In this experiment,
we use libVMA [77] to reduce the network stack time by
moving network procedures into the user-space and avoiding
the expensive context switching from the kernel. To evaluate
an ideal scenario where the server-side overhead is minimal,
we use the microbenchmark introduced in Section VI-B1. And,
both the client and the server are running optimized network
stacks. Figure 22 compares the update-throughput among four
designs: Client-Server, PMNet, Client-Server + libVMA, and
PMNet + libVMA. The result shows that, without libVMA,
PMNet provides 3.08× better throughput. After applying
libVMA, the server network stack overhead is significantly
reduced. Nonetheless, the integration of PMNet still provides
3.56× better throughput. Although the speedup is lower—part
of the server-side overhead has been reduced by libVMA—the
benefit from PMNet is still significant as PMNet moves the
remaining server processing time off the critical path.
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VII. DISCUSSION

In this section, we discuss the network bandwidth and PM
performance, and alternatives to PMNet.

Reaching Higher Network Bandwidths: Fundamentally,
PMNet supports higher bandwidths. First, the relatively slower
PM access is decoupled from the network traffic by queuing
the PM access in log queues. By increasing the log queue size
according to the bandwidth-delay product (BDP) (Equation 1)
of a high-bandwidth network, PMNet can buffer incomplete
accesses to PM. To support a 100 Gbps network, only a 10 kbit
(or 1.25 kB) log queue buffer would suffice. Second, the PMNet
only needs to buffer ongoing update requests that have not
been committed to the server. Only 500 Mbit (or 62.5 MB)
of PM is needed to buffer the in-flight update requests in a
100 Gbps network (Equation 2).

PM Write Bandwidth: In our implementation, we use
battery-backed DRAM on the FPGA board, that has a band-
width of 2.5 GB/s, similar to the per-DIMM bandwidth of
Intel’s Optane PM. We expect that future PM technologies
will enable much higher bandwidth, such as the higher-
bandwidth battery-backed NVDIMMs [91], the emerging
persistent cache [90], and alternative PM media (e.g., STT-
RAM [58], ReRAM [113]). With a higher PM bandwidth,
PMNet can handle higher update request bandwidth.

External Persistent Storage: We integrated PM into a
network device. Alternatively, other types of storage can also
maintain persistent data. For example, switches can access a
network-attached PM device [102] (or SSD [78]) instead of
keeping persistent data on-board. However, such designs add
additional network latency to persist data in the network device,
eventually inflating the critical path of client execution. Further,
as our BDP calculations have shown (Section V-A), the PM
capacity requirement is relatively small, and therefore, it is
unnecessary to use an external device for persisting requests.

VIII. RELATED WORK

In this section, we discuss the related works in PM systems,
network optimization, and in-network compute.

Persistent memory systems: The integration of PM
improves the performance of managing persistent data over
conventional storage devices, such as SSD and HDD. Various
software systems take advantage of PM for better storage per-
formance. PM-optimized file systems allow existing programs
to manage data efficiently on PM [23, 34, 115]. Distributed,
PM-based file systems allow clients to access PM remotely
while benefiting from PM’s high performance [74, 94, 119].
There are also PM-optimized databases and key-value store
applications that accepts requests from clients [8, 46]–[48, 61,
111]. Applications can also choose to manage data on PM
without software indirections, by maintaining their own PM
data structures [5, 19, 22, 42, 85, 105, 117]. However, even with
a faster storage backend, the client still needs to go through
the network and wait for the entire RTT to update persistent
data on the servers. In comparison, the integration of PMNet
can improve the performance by moving both network stack
and processing time off the critical path.

Performance of the PM system is one of the major aspects,
and correctness is another, as ensuring a consistent recovery
in PM systems is hard and error-prone. Recent works have
provided tools that ensure PM-based applications recover to a
consistent state in event of a failure [33, 39, 71]–[73, 83]. These
testing methods can be adapted to in-network data persistence
systems, to validate not only the ordering in one application
but also the persist ordering among clients and servers. Further,
verification tools for programmable data plane [37, 68] can
work in cooperation with PM testing tools and guarantee end-
to-end correctness of a system with in-network data persistence.
We leave this direction as a future work.

In-network compute: In-network compute reduces la-
tency for a variety of tasks by moving computation off
the server and into the network. Prior works proposed pro-
grammable switches for network functions such as load bal-
ancing [54, 79, 79] and packet scheduling [40, 98]. In addition,
programmable switches can also offload part of application’s
logic into the network such as data aggregation [26, 93, 116],
and machine learning [36, 66, 116]. In-network compute can
also accelerate storage workloads through caching [51, 64, 69].
However, the persistence domain in these workloads is still
limited to the server. A recent work NetChain [52] utilizes the
storage capability of programmable switches; however, it only
stores the coordination information rather than persisting data
in the network. To maintain data persistence in the network,
this work introduces PMNet that places PM on network devices,
such as NICs and switches. We expect future works to further
integrate other acceleration logic into PMNet to accelerate a
wider range of applications.

IX. CONCLUSION

In this work, we propose in-network data persistence that
exposes the persistence domain to the network to persist update
requests with sub-RTT latency. We design a PM-integrated
programmable network device, PMNet, that logs in-flight
update requests, and moves the server network stack and
processing time off the critical path. We implement PMNet in
an FPGA-based programmable switch and NIC and evaluate
them in a real system with a variety of workloads. Compared
to the existing system, PMNet can improve the throughput of
update requests by 4.31× on average, and the 99th-percentile
tail latency by 3.23×.
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