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Abstract—Persistent memories (PMs) provide byte-addressable
persistent storage with an access latency close to DRAM. Pro-
grams can achieve better performance by directly managing
persistent data in PM. Unfortunately, these programs need to
explicitly order in which data becomes persistent to PM for
recoverability. Such enforced orderings place the write-back
latency on the critical path of the execution. On the other hand,
PM systems integrate different operations to support security,
bandwidth reduction, endurance, etc. These PM-support opera-
tions further increase the write latency as they first transform
data (e.g., encrypt and compute integrity tree) before persisting it
to PM. Prior work proposed to use software hints to pre-execute
these operations but can increase programmers’ burden. The
goal of this work is to mitigate the overhead due to PM-support
operations in a software-transparent manner.

If we can determine the address and value of a PM write-
back ahead of time, it is possible to precompute its PM-support
operations and move them off the critical path. We observe
that both the address and data of PM write-backs often appear
as values in prior store-instructions during the execution. For
example, a PM allocator first uses a store-instruction to assign
the allocated address to a pointer; later, the follow-up procedure
updates that allocated address with new values and performs
a write-back to PM. In this example, the value carried by the
PM allocator’s store-instruction contains the address of the later
PM write-backs. Likewise, the data values also often appear in
prior store-instructions, e.g., when passing values to a PM update
function. Therefore, it is possible to predict the address and data,
and precompute the PM-support operations for future write-
backs by tracking store-instructions. We propose PMWeaver that
learns the correlation between a PM write-back and the associ-
ated store-instructions and weaves together the address and data
value of a PM write-back from the correlated store-instructions.
Our evaluation demonstrates that PMWeaver correctly predicts
81.16% of addresses and 49.90% of data of PM write-backs in
ten PM workloads, and yields 1.63× and 1.26× speedup over a
no-prediction baseline system by precomputing two types of PM-
support operations: a combination of encryption and integrity
verification, and deduplication.

Index Terms—persistent memory, prediction

I. INTRODUCTION

The advancement of persistent memory (PM) technologies,
such as Intel’s Optane DC Persistent Memory [1], provides fast
and byte-addressable access to persistent data. Programs can

*Suyash Mahar contributed to this work during his internship at the University
of Virginia.

directly manipulate persistent data in PM through a load/store
interface. Various software systems have been developed and
deployed to leverage the benefits from the unified memory and
storage systems. Examples include PM-optimized databases [2]–
[6], file systems [7]–[11], and transactional libraries for
various data structures [12]–[14]. These PM-based software
systems tend to bypass the OS indirections (e.g., file systems)
and directly manage persistent data in memory for better
performance. As a result, these systems cannot rely on the OS
to recover to a consistent state after a failure.

The burden of maintaining the recoverability of persistent
data across system reboots or unexpected failures (i.e., crash
consistency) now lies on the programmers. Programs need
to manage writes to PM carefully using write-back (e.g.,
CLFLUSH and CLWB) and fence (e.g., MFENCE and SFENCE)
primitives [15]–[26]. With these primitives that ensure order-
ings, programs typically implement certain crash consistency
mechanisms, such as undo/redo logging [8, 12, 21, 27, 28],
shadow paging [29, 30], and checkpointing [31, 32]. For
example, the undo logging mechanism first creates a log
of a persistent object and writes it back to PM before any
modification to that object occurs. As a result, such write-
backs and fences can block the execution and place the write
latency on the critical path. On the other hand, a PM system
requires not only crash-consistent software, but also additional
support on the hardware side. These PM-support operations
in the memory controller [33] guarantee the security of data
using encryption and integrity verification [34]–[40], extend
the memory lifetime through wear-leveling mechanisms [41]–
[44], and overcome bandwidth limitation by employing data
compression or deduplication [45]–[48]. These seemingly
different operations exhibit one common characteristic—they
all take place before data is written back to PM, e.g., encrypting
a cache line before it is written back to PM. These operations
are not only computation heavy but also introduce additional
memory accesses. For example, an update to a Merkle Tree for
integrity verification involves fetching existing nodes from
PM and performing a series of hash computations from
the leaf to its root [49]. Therefore, PM-support operations
can take hundreds of nanoseconds, and their integration
significantly increases the write latency and degrades the overall
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Fig. 1: Slowdown due to encryption and integrity verification
over the original system without these PM-support operations.

performance. Figure 1 shows that a combination of encryption
and integrity verification in a secure PM system introduces
2.54× slowdown on average (methodology in Section VI-A).

Prior works proposed different optimizations to reduce
the latency of PM-support operations [33, 35, 45]–[47, 49,
50]. A recent work reduces this overhead by using software
hints to precompute these operations and overlapping the
precomputation with program execution [33]. Although effec-
tive in hiding the PM-support latencies, such a software-hint-
based technique has several limitations. First, instrumenting
software hints adds a significant burden on the programmers.
Compiler support can reduce the programmer’s burden, but it
is limited to static information and cannot cover dynamically
allocated memory, function calls, and loops. These constraints
result in fewer opportunities for optimization and limited
speedup from precomputing the PM-support operations. Second,
such software hints complicate the ISA and impact the code
portability—the code may become incompatible with new
PM hardware platforms. Therefore, we argue that a generic
precomputation technique for PM-support operations should be
software-transparent. Compared to a hardware approach, the
precomputation would not be limited by the software context
or complicate the programming. The goal of this work is to
overlap the extra PM-support latencies through hardware-based
precomputation, without requiring any software modification.

Intuitively, PM-support operations can be initiated as soon
as the address and data of a PM write-back become available.
Therefore, a naive way to precompute these operations would
be to start the computation once an update enters the memory
hierarchy. If there was a sufficient time duration between data
become available in cache (i.e., via a store) and the later
write-back operation (e.g., a sequence of “CLWB;SFENCE”
that persists the updates), we could overlap the entire PM-
support computation. However, crash consistency mechanisms
rely on frequent write-backs, making the time gap short in PM
programs. Our evaluation with common PM workloads [12, 21,
33, 51] shows that the average latency for encryption + integrity
verification is 610 ns but only 23.1% of the write-backs actually
have such long time gaps. The majority of the write-backs
(76.9%) need to start the precomputation much earlier to hide
the long latency of these PM-support operations. Therefore,
we cannot solely rely on precomputing PM write-backs from
data in the cache but need an intelligent mechanism to identify
the address and data of write-backs way ahead in time.

<Instr> <addr> <data>
St-A   ...
St-B   ...
St-C  0x7f00  0xbeef
St-D  0x7f08  0x1000
...
//Store to PM
St-P  0x1000  0xbeef
//Write-back
CLWB  0x1000
SFENCE

(a) Learn
St-A   ...
St-B   ...
St-C  0x7fe0  0xabcd
St-D  0x7fe8  0x1010

Trigger by Path 

(b) Predict
Next 
Time

0x1010 0xabcd
(c) Validate

Precompute“St-P” 0x1010 0xabcd

Actual Write-back

Fig. 2: High-level idea of PMWeaver.

Predict the PM write-back’s address and data based on
values from prior store-instructions: The first challenge of
this work is how the hardware can identify the address and
data of a PM write-back early enough to hide the latency of
precomputation. We observe that a PM write-back’s address and
data are often carried by prior store instructions, long before
its actual access to PM. For example, a procedure that appends
a new node to a persistent linked list stores the new node’s
address in a pointer and then stores the values of each field of
the node before persisting the node. As such, the new node’s
address and data values are available in these store-instructions
prior to its write-back to PM that enforces persistence, making
it possible to precompute the PM-support operations from these
values. Therefore, our key idea is to use values from prior
store-instructions for predicting the address and data of future
write-backs. Figure 2a shows an example where the address and
data of a write-back to PM (CLWB to write-back St-P) can be
found in instruction St-D and St-C. By learning this pattern
in the PM-addr/data generation relationship, we can predict
address and data values as soon as these store-instructions
execute. Thereby, the precomputation can start much earlier.

Trigger prediction according to execution path: The
key observation on store-instructions generating addr/data of
a future write-back leads to the second challenge—how a
prediction should be triggered? The prediction can start as soon
as it has identified and learned the PM addr/data-generating
relationship pattern, i.e., the relationship between a PM write-
back and its prior store-instructions. A naive solution could
trigger the prediction upon observing the first store-instruction
in the learned pattern and wait for the remaining ones to
become available. However, the same store-instruction can
contribute to many different PM addr/data-generation patterns.
For example, a PM allocator is frequently used in different
functions and contributes to multiple PM addr/data-generation
patterns, and thus, predictions triggered by its internal store-
instructions are likely to cause mispredictions. We notice that
each write-back to PM usually occurs in a relatively unique
context—the sequence of store-instructions that appear before
the write-back naturally forms an execution path. Thus, our key
idea is to trigger the prediction only when the same execution
path is observed again, as the execution path can help mitigate
mispredictions. Figure 2b demonstrates that the prediction is
triggered by the path of St-A, St-B, and St-C.

Resolve mispredictions using a validator: Once a predic-
tion is generated, the predicted address and data values can
initiate the precomputation. This leads to the last challenge—
how to ensure that mispredictions can be resolved, without
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void update(entry_t *location, 
            entry_t new_data) {
 backup->data = *location; 
 backup->location = location;
 persist_barrier(...);
 backup->valid = 1;
 persist_barrier(...);
 *location = new_data;
 persist_barrier(...);
 backup->valid = 0;
 persist_barrier(...);
}

1
2
3
4
5
6
7
8
9

10
11
12

(a)  Low-level PM primitive based (b)  PM transaction based

void listInsertHead(int new_data) {
 TX_BEGIN(pm_pool) {
   node_t *node=TX_NEW(node_t);
   node->data=new_data;
   node->next=head;
   node->prev=NULL;
   TX_ADD(head->prev);
   head->prev=node;
   TX_ADD(head); //Backup head
   head=node;    //update head
 } TX_END //Writeback updates
}
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Fig. 3: Examples of PM program using (a) low-level primitives
and (b) PM transactions.

impacting the persistency model? We find that the persistency
remains unaffected as long as the predicted data and associated
metadata for the PM-support operations (e.g., hash values
for integrity verification) do not become persistent or change
any processor state (e.g., metadata cache). Therefore, our key
idea is to have the predictor buffer the precomputed results
and metadata and validate them against the actual write-back
(Figure 2c).

Putting together the three key ideas above, we propose
PMWeaver, a software-transparent mechanism to mitigate
the performance overhead of PM write-backs by precom-
puting the PM-support operations. PMWeaver learns the
addr/data-generating relationship between a PM write-back
and prior store-instructions and weaves data values from
store-instructions to predict the future PM write-backs.1 The
contributions are the following:
• This is the first work that transparently precomputes latency-

critical PM-support operations before actual PM write-backs.
• We propose PMWeaver that learns the relationship pattern

between a PM write-back and prior store-instructions and
predicts the PM address and data values for precomputation
from the associated store-instructions.

• Our evaluation shows that PMWeaver correctly predicts
81.16% and 49.90% of the address and data for precomputa-
tion, respectively. Compared to a baseline without prediction,
it yields a speedup of 1.63× in a secured PM system with
a combination of encryption and integrity verification, and
1.26× in a PM system with deduplication.

II. BACKGROUND AND MOTIVATION

In this section, we start by introducing PM programming
patterns that ensure data recoverability. Then, we describe
the performance overhead of PM-support operations and
motivate the need for predicting PM write-backs to move
these operations off the critical path.

A. PM Programming Pattern

PM technologies, such as Intel’s Optane DC Persistent
Memory [1], offer latency benefit close to DRAM while
ensuring data persistence, blurring the boundary between
memory and storage. PM programs can bypass OS indirections
(e.g., file systems) to manage persistent data directly. Because
of the direct management, these programs also need to ensure
recoverability in case of a failure, which requires writes to
1The simulator is available at https://pmweaver.persistentmemory.org.
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MAC = Hash(Encrypted Data, Counter)
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Fig. 4: (a) Encryption and (b) integrity verification.

be properly ordered. The hardware system provides low-level
primitives to perform write-back (e.g., CLWB) and enforce
ordering (e.g., SFENCE). For simplicity, we refer to a sequence
of “CLWB; SFENCE” as a persist_barrier() [52].
Next, we describe the use of low-level primitives with an
example.

Example based on low-level PM primitives.: Figure 3a
shows an update() function that modifies a persistent array
using low-level PM primitives for crash consistency by taking
the following steps: backup the old data (line 3-4), set a valid
bit of the backup (line 6), update in-place (line 8), and finally
commit the update by invalidating the backup (line 10). In
this procedure, the program places a persist_barrier()
after each step to ensure all updates have been persisted before
moving to the next step. This example demonstrates a typical
way of programming with low-level primitives to carefully
manage ordering and write-back of PM updates. As a result,
write-backs happen immediately after the updates to PM objects
(i.e., via store-instructions).

Example based on a PM transaction.: Alternatively, there
are also libraries that abstract away the low-level primitives. A
representative example is using PM transactions. For example,
Intel’s PMDK library [12] wraps up a transaction of PM
updates with a pair of TX_BEGIN and TX_END, and lets
programmers log the original data before modification with
methods such as TX_ADD (i.e., undo log). Figure 3b shows
a listInsertHead() function that appends a new node
to the head of a persistent linked list. The program wraps the
whole procedure inside a transaction, and uses TX_ADD for
logging, and TX_NEW for allocation. These types of programs
hide low-level primitives in the library function calls, where
logs need to be persisted before the actual in-place update, and
all updates need to be persisted at the end of a transaction.

B. PM-Support Operations

Besides the crash consistency guarantee, PM systems also
need additional operations in the hardware as it unifies the
characteristic of both the memory and storage. Examples
include encryption and integrity verification techniques to
ensure the security of persistent data [34]–[39], compression
and deduplication to increase bandwidth and capacity [45]–[48,
53], and wear-leveling techniques to improve the lifetime of
persistent memory [41]–[44]. Next, we describe two examples
of PM-support operations.

1) Encryption and integrity verification.: Figure 4 demon-
strates counter-mode encryption [54]–[56] and integrity ver-
ification [33, 37]–[39] in PM systems. Figure 4a shows the
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Fig. 5: Deduplication.

decryption and encryption procedure. During a write access,
the encryption engine generates a one-time pad (OTP) using a
key, a cache line address, and a counter. It then XORs the OTP
with the plaintext data to generate the encrypted data, i.e.,

EncData = Enc(Addr|Counter,Key)⊕PlaintextData.
Figure 4b shows the process of integrity verification using
a Bonsai Merkle Tree [49], where the leaf nodes are the
aforementioned encryption counters, and the intermediate nodes
are the hashes of their child nodes. i.e.,

ParentNode = Hash(ChildNode1,ChildNode2, . . .).

The nodes are hashed level by level, such that the root of the
Merkle Tree becomes a hierarchical hash of all the counters
(root is stored on-chip to prevent tampering). Modification
of any counter will change the hashes and will indicate
an unauthorized update. The encrypted data blocks are also
encoded into message authentication codes (MACs) to protect
data integrity, i.e.,

MAC = Hash(EncData,Counter).
The MACs are updated on write and verified on read. However,
the memory controller needs to update hash values from the
leaf all the way to the root during every write access to keep the
Merkle Tree up-to-date. These operations are not only compute-
intensive, but also introduce additional memory accesses to
fetch nodes from PM. Even after hiding some of the latency
using a metadata cache, on average, encryption and integrity
verification incur 610 ns in our evaluation.

2) Deduplication.: Figure 5 shows the procedure of PM
deduplication, which reduces the write bandwidth and increases
the effective memory capacity [33, 50, 57]. During a write
access, the memory controller first hashes the data block into
a fingerprint, i.e.,

Fingerprint = Hash(Data).
Second, it looks up the fingerprint in a deduplication hash
table. If found, the data turns out to be a duplicate and does
not need to be written to memory. If the fingerprint does
not match, the write is sent to PM, and the address mapping
table is updated to store the location of the data block. The
deduplication process significantly increases the write latency
as it involves additional memory accesses when the lookup in
the hash and mapping table misses the metadata cache. Our
evaluation shows that deduplication increases the write latency
by 334 ns on average.

C. Performance Overhead

As introduced in Section II-A, crash consistency mechanisms
in PM programs usually strictly enforces the order in which
updates write-back to PM. With the PM-support operations,
the write-back latency is significantly increased. Recent PM
systems introduce techniques, such as asynchronous DRAM

Time
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WPQ PM Access

Cache 
Writeback WPQ PM Access

No PM-Support:

With PM-Support:

Volatile buffering

PM-Support OP
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PM-Support:
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(c)

(b)
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Fig. 6: Breakdown of the write-back latency.
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Fig. 7: The time duration of data being available in the cache,
before being written-back.

refresh (ADR), that moves the write pending queue (WPQ)
to the persistence domain using capacitors [58, 59], and
thereby, a write-back becomes persistent before entering PM
(demonstrated by the timeline in Figure 6a). However, PM-
support operations are power-intensive and may introduce
additional memory accesses (e.g., upon a counter cache miss
during encryption). Consequently, it is not feasible to back
all PM-support operations with a small amount of residual
energy. As such, these operations must complete before a write
becomes persistent, introducing a significant increase in the
write-back latency (as shown in Figure 6b).

Prior works proposed efficient implementation of these PM-
support operations to reduce the write-back overhead [33, 35,
45]–[47, 49, 50]. A recent work [33] further reduces the latency
by overlapping the operation with the program execution using
software hints. Though this precomputation technique is highly
effective in moving the overhead off the critical path, it has
several shortcomings. The software hints requirement breaks the
existing system abstraction, complicates the ISA, and degrades
software’s portability and programmability. Even with compiler
support, the software-directed method is still largely limited by
the static information—cannot adapt to dynamically allocated
memories, function and loop boundaries, and control flows.
Ideally, the mitigation should be transparent without requiring
any software modification. The goal of this work is to provide a
software-transparent solution to precompute these PM-support
operations off the critical path, as shown in Figure 6c.

D. Need for Write-back Prediction

A naive method is to precompute these PM-support opera-
tions once data becomes available in the cache hierarchy (i.e.,
the last store to a cache line has reached the L1 cache), as data
enters the cache before being written back. If the duration of
time—from data becomes available in the cache to its write-
back—is sufficient for PM-support operations to complete, their
latencies can be overlapped. Figure 7 characterizes the write-
back behavior of ten common PM workloads (methodology
in VI-A). The X-axis shows the time during which data remains
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void update(entry_t *location, 
            entry_t new_data) {
 backup->data = *location; 
 backup->location = location;
 persist_barrier(...);
 backup->valid = 1;
 persist_barrier(...);
 *location = new_data;
 persist_barrier(...);
 backup->valid = 0;
 persist_barrier(...);
}

St-1A    ...
St-2A    ...
St-3A  0x7f90  0xbbaa
St-4A    ...
St-5A  0x7f08  0x1040
St-6A     
St-7A    ...
St-8A  0x1040  0xbbaa
CLWB
SFENCE

Addr-Gen

Data-Gen

1
2
3
4
5
6
7
8
9

10
11
12

<Instr> <Addr>  <Data>

T
im
e

Blocking Write-back

PC-Path

Fig. 8: Execution trace in the example of Figure 3a.

void listInsertHead(int new_data) {
 TX_BEGIN(pm_pool) {
   node_t *node=TX_NEW(node_t);
   node->data=new_data;
   node->next=head;
   node->prev=NULL;
   TX_ADD(head->prev);
   head->prev=node;
   TX_ADD(head); //Backup head
   head=node;    //update head
 } TX_END //Writeback updates
}

1
2
3
4
5
6
7
8
9

10
11
12

St-1B    ...
St-2B    ...
St-3B  0x7f58  0xabcd
St-4B    ...
St-5B  0x7fb0  0x1050
St-6B    ...
St-7B  0x1050  0xabcd
CLWB
SFENCE

<Instr>  <Addr> <Data>

Fig. 9: Execution trace in the example of Figure 3b.

available in the cache. And, the Y-axis shows a CDF of data
write-backs (average over these workloads) that happen within
different time durations. On average, 76.9% of the write-backs
happen within the average PM-support latency (610 ns of
encryption and integrity verification latency), as indicated by
the red region. Therefore, a large fraction of write-backs do not
have a sufficient time duration to precompute, as their time gap
between data becomes available in the cache, and its write-back
is less than the average PM-support latency. We conclude that
most of the write-backs need to be predicted earlier in order
to overlap the latency of these PM-support operations. Hence,
the rest of this paper will be focusing on the prediction of the
address and data for the majority of the time-critical write-
backs (Section IV and V). In addition, we provide a simple but
effective mechanism that covers the remaining write-backs that
can be precomputed using data from the cache (Section V-D2).

III. PM WRITE PREDICTION

So far, we have discussed the performance overhead of
PM-Support operations. To enable early precomputation of
these operations, we propose PMWeaver, a hardware-based
prediction mechanism that transparently and timely mitigates
the overhead of PM-support operations. Next, we discuss the
challenges and our key ideas.

A. Prediction Based on Store-instructions

Challenge: As the workload characterization in Sec-
tion II-D has shown, the majority of write-backs require their
address and data to be directly predicted, way before the update
to PM has happened. Therefore, the first challenge is how
PMWeaver can obtain both values early enough to hide the
latency of PM-support operations.

Key observations: Let us revisit the examples in Sec-
tion II-A. Figure 8 shows the execution trace in the example
of Figure 3a. Line 8 is a performance-critical write to PM,
where the program updates new_data to location and then
immediately writes it back using a persist_barrier().
We observe that the value of both address and data of this
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Fig. 10: The percentage of PM write-backs with address/data
generated by prior store-instructions with an ideal predictor.
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write-back have appeared in prior store-instructions (St-5A
and St-3A) when update() is being called. Figure 9 shows
the execution trace in the example of Figure 3b. Similar to the
first example, the in-place update to the head pointer at line
9 is performance-critical as it is immediately written back at
the end of the transaction (line 11). We observe that line 3
(St-3B) stores the data value of the new pointer and line 9
(St-5B) stores the address value of the existing head to the
log. Therefore, we conclude that store-instructions prior to a PM
write-back may generate its address and data values. We refer
to such a correlation pattern between store-instructions and the
later PM write-back as the addr/data-generating relationship.
We further find that this relationship has two characteristics.

1) Addr/data-generation relationship is frequent: We first
analyze the percentage of PM write-backs (cache-line-sized)
that have data/address found in prior stores by profiling ten
PM workloads. Figure 10 demonstrates the statistics using an
ideal predictor that does not limit the search scope, where the
address- and data-matching take a granularity of 8B and 4B,
respectively. On average, 80.8%/92.4%/80.7% of PM write-
backs have their address/data/both generated by prior store-
instructions. Therefore, store-instructions frequently generate
the address and data values of future PM write-backs.

2) Addr/data-generation relationship is stable: We then
observe that the addr/data-generation relationship is stable as
the same PM update procedure usually executes repeatedly,
such as update() and listInsertHead() from the
examples in Section II-A. Figure 11 shows the top-20 sets
of unique addr/data-generating instructions (i.e., their PCs)
in these ten workloads. We observe that they mostly follow
a Pareto distribution—a small number of PCs generate the
majority of the PM write-backs (represented by the total gray
area in each sub-figure). On average, the top-20 repeated PC
sets generate 68.6% of PM write-backs.
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Key Idea: The observations above shows that the addr/data-
generating relationship frequent and stable. Therefore, our key
idea is predict the address and data of PM write-back based
on store-instructions. First, PMWeaver records the addr/data-
generating store-instructions. Later, when observing the same
pattern of instructions, PMWeaver weaves together the values
from these store-instructions to generate a prediction.

B. Prediction Triggering According to Execution Path

Challenge: With the addr/data-generating instructions
identified, the next step is to trigger a prediction as soon
as those store instructions are executed. A naive solution is
to trigger the prediction when observing the oldest addr/data-
generating instruction. However, a store-instruction can be
executed in multiple contexts and therefore can contribute to
multiple predictions. In example of Figure 9, the prediction
will be triggered upon observing the oldest store-instruction,
St-3B. Because this instruction is part of a PM allocation
function (wrapped in TX_NEW()) that can be shared among
different procedures, such a naive method can lead to inaccurate
predictions. Thus, precisely triggering the prediction is the
second challenge.

Key idea: We observe that, although an addr/data-
generating instruction alone can be common to multiple
predictions, the context it resides remains mostly unique.
For example, in Figure 8, the store-instructions, St-1A and
St-2A, executed prior to St-3A provide a unique context
leading to this specific addr/data-generating pattern (marked
with a green arrow). Such context can be represented as a
sequence of store-instructions (i.e., their PCs) that happen prior
to the oldest addr/data-generating store-instruction, which we
refer to as a PC-path. Similarly, a sequence of St-1B, St-2B,
and St-3B is a PC-path in Figure 9. In summary, our key
idea is to trigger a prediction based on the PC-path.

C. Misprediction Handling

Challenge: Though write-backs are predictable, a predic-
tor by itself does not guarantee correctness. Mispredictions can
lead to incorrect values written back to PM, and cause other
predictions that use the misprediction’s PM-support metadata to
be wrong. Therefore, the last challenge is how PMWeaver can
ensure the write-backs, as well as their metadata, are correct
in case of mispredictions.

Key idea: Our key idea is to buffer the precomputed
prediction results until they have been validated against the
actual write-back. PMWeaver stores the predicted write-backs
and their associated metadata in a volatile buffer without
mutating the persistent state or affecting any other processor
states (e.g., registers, and data and metadata caches). Once the
actual write-back arrives, the predictor validates the prediction
by comparing the predicted addr/data with the actual ones. If
the prediction is correct, the predictor can safely update the
processor state, and the precomputed results and metadata
can be persisted following the original persistency model.
Otherwise, it discards the results and recomputes PM-support
operations according to the actual write-back.
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Fig. 12: Mechanism of PMWeaver. Components not involved
in the current step are in gray.

IV. PMWEAVER OVERVIEW

PMWeaver consists of three main components: a learner that
records the addr/data-generating pattern for future predictions,
a predictor that generates a prediction once observing the same
learned pattern, and a validator that ensures correctness in case
of mispredictions. Next, we present an overview of PMWeaver.

A. Learner: Identify addr/data-generating pattern

The learner in PMWeaver identifies the set of store-
instructions that supply address or data values to subsequent
PM write-backs. It maintains a Store History buffer (StHistBuf)
that records recent store-instructions (step Ê in Figure 12a).
Upon a PM write-back,2 the learner matches address and data
values of the PM write-back to the values in the StHistBuf
(step Ë), to determine the set of store-instructions that generate
the address/data values of this PM write-back. As a PM write-
back happens at cache-line-granularity but store-instructions are
fine-grained, the learner breaks the cache line into smaller data
chunks during matching (details in Section V-B1). Once identi-
fied, the learner adds this group of store-instructions (i.e., their
PCs) to the Prediction Table (PredTable), where PMWeaver
will use them to generate future predictions. An example of
this matching procedure is presented in Section IV-D. With the
PredTable entry created, the next step is to make a prediction
when observing the same addr/data-generating stores again.

B. Predictor: Trigger prediction using execution path

As discussed in Section III-B, PMWeaver uses the execution
path (i.e., a PC-path) to accurately trigger predictions. Thus,
the predictor is implemented as a set-associative structure,
index/tagged by the PC-path of a set of addr/data-generating
store-instructions. As Figure 12b demonstrates, once observing
the same PC-path again (step Í), the predictor generates a
prediction (step Î) and waits for upcoming store-instructions to
contribute their values. After collecting all values, the predictor

2PMWeaver determines whether a write-back is to PM based on the physical
address from the TLB. However, this does not introduce extra TLB accesses
as address translation always happens during a write-back.
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0x7f18  0x5640  0x0100
0x7f10  0x5648  0xbeef
0x7f28  0x5650  0x1040
0x7f80  0x1040  0xbeef
0x7f88  0x1048  0x0100
...//write-back st-4,5
0x7f18  0x5600  0x0200
0x7f10  0x5608  0xabcd
0x7f28  0x5610  0x1080
0x7f80  0x1080  0xabcd
0x7f88  0x1088  0x0200
...//write-back st-9,10
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Fig. 13: A walk-through example.

sends the predicted PM write-back for precomputation of PM-
support operations (step Ï). We describe more details about
the PC-path generation in Section V-A1 and the handling of
pending predictions in Section V-B2.

C. Validator: Resolve mispredictions and guarantee correctness

The last step is to validate the predicted PM write-back and
invalidate mispredictions. PMWeaver maintains a validator
that buffers the predictions in the prediction result buffer
(PredResBuf), as shown in Figure 12b. Upon reception of
a new prediction, the validator inserts it into the PredResBuf
after calculating its PM-support operations. When an actual PM
write-back arrives, the validator looks up its destination address
in the buffer, and compares the actual PM write-back with
the prediction (step Ð). Once a prediction has been validated,
the memory controller writes back the precomputed data and
the associated metadata directly (step Ñ), without breaking
the original persistency model. To guarantee correctness,
PMWeaver only updates the processor state after the validation
(e.g., the encryption counter cache and the root node of the
Merkle Tree). Note that a prediction can be incorrect when
the metadata used at the time of precomputation differs from
that at the time of PM write-back. PMWeaver invalidates such
precomputations, to avoid persisting any incorrect states (more
details in Section V-C3).

D. A Walk-through Example

Figure 13a is a store-instruction trace from a PM procedure
that has been invoked twice. Figure 13b demonstrates the
corresponding updates to the major structures in PMWeaver.
First, the learner monitors incoming store-instructions and
buffers them in the StHistBuf (step Ê). When a PM write-back
is observed, it matches the values of its address and data in
StHistBuf to find the addr/data-generating store-instructions
(step Ë). This matching pattern is then added as an entry in
the PredTable (step Ì). The PredTable entry also adds the
associated PC-path to use it as the prediction trigger in the
future. Then, the next time the same PC-path is observed, the
predictor looks up the associated addr/data-generating store-
instructions, and weaves together the address and data values of
the future PM write-back from these store-instructions (step Í).
A completed prediction is then sent to the PredResBuf for
precomputing the PM-support operations, without changing

PCData

PC- Path
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1⨉Addr-gen PC Addr/Data 

confidence

...

16⨉ Data-gen PCs 
PC-Path

Addr
Predicted 

Data
Processed

Data
PM-Support
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(b) StHistBuf entry (c) PredTable entry

(d) PredResBuf entry

Index

Index

Index

. . .
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PC1 << 1
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PC-Path

PCn << n (Current PC)

(Prev. PCs)

(a) PC-Path Generator

Fig. 14: Structure details of (a) PC-path, (b) store history buffer,
(c) prediction table, and (d) prediction result buffer. The first
field of each structure is the index (as indicated by the arrow).

any processor or PM state (step Î). Finally, when the actual
write-back arrives, the validator compares the predicted values
with the write-back (step Ï). After validation, it persists the
data and metadata following the original persistency model
and updates the processor state.

V. PMWEAVER DETAILS

In this section, we will first discuss the details of the leaner,
predictor, and validator (Section V-A to V-C), and then present
two special-case predictors that work together with the main
predictor (Section V-D).

A. Learner Details

This section describes two key components of the learner
in detail, the PC-path encoder and the store history buffer.

1) Efficient PC-path encoding: PMWeaver encodes the PC-
path with an XOR hash of 32 most recent store-instruction PCs.
Our XOR hash maintains the information about instruction
ordering by shifting n-th store-instruction by n bits, as shown
in Figure 14a. Next, we describe how the encoded PC-path is
stored in PMWeaver.

2) Store history buffer (StHistBuf) organization: To match
the data and address of a write-back with prior store-
instructions, the StHistBuf is implemented as a set-associative
structure and is indexed/tagged by the data values. Figure 14b
shows the fields in each StHistBuf entry. When inserting a
new entry, StHistBuf first replaces older entries to track n most
recent stores. The age of a store is determined by a timestamp
in each StHistBuf entry. Then, it records the current PC-path
in the same entry. This way, when this store-instruction is
involved in a prediction, the predictor can choose the PC-path
associated with the oldest entry.

B. Predictor Details

This section describes the key component in the predictor,
the prediction table, and the detailed mechanism of gathering
pending predictions from upcoming store-instructions.

1) Prediction table (PredTable) organization: The learner
breaks the cache line into 16× 4B data chunks and 1× 8B
address chunk before performing matching. Each of these
chunks (16 data chunks and 1 address chunk) are matched
to one store-instructions from the StHistBuf which predicts
its value. These address and data generating chunks are then
recorded in the Predictor Table (PredTable) for predicting
future write-backs (Figure 14c). In case one data value matches
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Fig. 15: Pending Prediction Table in PMWeaver.

multiple store-instructions in the StHistBuf, the learner takes
the one with a lower timestamp value.

2) Pending prediction generation: The predictor maintains
a pending prediction table (PendPredTable) to wait for the
addr/data-generating store-instructions to contribute their values
(Figure 15). The PendPredTable consists of two levels of
cache-like structures. The first level is an index generator
that maps the PCs of addr/data-generating store-instructions
to the prediction result, and the second level is a table of
pending predictions that is indexed by the first structure. Once
the predictor generates a new prediction, the PendPredTable
adds the PCs of the addr/data-generating instructions to the
index generator, where each PC points to a common pending
prediction entry (step Ê). Upon observing a store-instruction,
the predictor determines whether it contributes to any pending
prediction by looking up its PC in the index generator (step Ë).
A matching PC then fills its data value into the indexed pending
prediction entry. Once all of the pending addr/data-generating
store-instructions have contributed their values to the prediction
result, the predictor merges the predicted data with existing,
unmodified data from the cache and sends the result to PM-
support operation units for precomputation (step Ì).

C. Validator Details

In this section, we first talk about the decoupled precompu-
tation for data and address, and then how the validator buffers
predictions and handles mispredictions.

1) Decoupled address and data precomputation: PMWeaver
takes the optimizations from a prior work [33], where PM-
support operations are divided into smaller sub-operations that
are dependent on address, data, or both. Thus, PMWeaver
can precompute address- and data-dependent sub-operations
separately. As predicting data is generally harder than address—
all 16 data chunks need to be correct as compared to one address
chunk—this decoupled precomputation allows a prediction with
correct address but wrong data to partially reduce the overhead
of the address-dependent sub-operations. Such decoupling is
beneficial to secured memory systems where the encryption
and Bonsai Merkle Tree nodes are mostly address-dependent.
PMWeaver can thus precompute most sub-operations as long
as the address is correctly predicted. Corresponding to the
decoupled address and data precomputation, each PredTable
entry maintains separate confidence bits for the address and data
(Figure 14c), which can mitigate the utilization of PM-support
units due to hard-to-predict address or data patterns.

2) Prediction result buffer (PredResBuf) organization: The
PredResBuf tracks the predictions generated by the predictor to
validate them when the actual write-back arrives at the memory
controller. It is implemented as a set-associative cache, indexed

Only invalidate metadata 
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Only invalidate 
common metadata

Independent Operations Dependent Operations 
(Bonsai Merkle Tree)

...

P3 P4

P1 P2

Correct prediction metadata
Misprediction metadata No need to invalidate 

unaffected metadataUntouched metadata

(a) (b)

Fig. 16: Misprediction invalidation.

by the predicted PM addresses. Each entry of PredResBuf
keeps the predicted PM write-backs together with the associated
PM-operation metadata (Figure 14d). Due to the difficulty in
predicting the whole cache-line of data, in our implementation,
the PredResBuf has 16 unique addresses, each of which keeps
16 distinct cache lines as candidates. Next, we describe how the
validator resolves mispredictions and guarantees correctness.

3) Misprediction invalidation: A prediction can be incorrect
when the metadata used at the time of precomputation differs
from that of the write-back. This can happen when an unpre-
dicted or mispredicted PM write-back modifies the metadata.
We identify two invalidation scenarios: (1) predictions that
only modify their own metadata, and (2) different predictions
share metadata of PM-support operations. In deduplication
and encryption, the precomputation result only depends on
the predicted cache line (a hash value in the deduplication
mechanism and an encrypted block in the encrypted memory),
without affecting other locations. Therefore, the precomputation
is independent of other predictions. Figure 16a demonstrates
this independent PM-support operation, where invalidation only
applies to one incorrect prediction. For example, prediction
P1 and P2 do not share any metadata. Thus the incorrect
prediction P1 does not affect P2.

In contrast, the integrity-verification system uses a Bonsai
Merkle Tree that consists of a hierarchical hash of per-cache-
line counters (details in Section II-B). Thus, the metadata can
be shared among predictions. As Figure 16b demonstrates, a
prediction P3 updates a series of Bonsai Merkle Tree nodes.
And, the next prediction P4 ends up dependent on some of the
updated nodes (circled in the figure). Upon modification of the
PM-support metadata, all dependent precomputations are invali-
dated and recalculated using the updated metadata. This might
seem to be a substantial recalculation at a glance. Fortunately, as
PredResBuf only keeps track of 16 unique prediction addresses
(Section IV-C), the address precomputations are limited to at
most 16 recalculations. Second, PMWeaver recalculates only
the nodes that are affected by the metadata update from PM-
support operation due to unpredicted/mispredicted write-backs
(i.e., nodes close to the leaf often have unaffected metadata
and do not need recalculation), as pointed out in Figure 16b.
Finally, PMWeaver generates prediction early (evaluated in
Section VI-B6), further reducing the performance impact of
invalidations. In total, recalculations due to stale predictions
only lead to a 3.8% performance overhead in a system with
encryption and integrity-verification.

D. Special-case Predictors

This section describes two predictors integrated into
PMWeaver for specific cases.
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❶ ❷

Fig. 17: Integration of the timeout-based predictor.

1) Zero-value prediction: Common data values can degrade
the prediction accuracy, as multiple store-instructions can
match a common data value and lead to data mispredictions.
PMWeaver handles the most common case of zero values by
directly predicting zeros (learned by setting a zero-word bit) if
a data chunk in the write-back is all-zero, rather than finding
their data-generating PCs.

2) Timeout-based prediction: Although a large fraction of
write-backs happen within a small time duration after data
becomes available in the cache as shown in Section II-D, there
are PM write-backs that happen long after data has arrived in the
cache. Predicting them with store-instructions is unnecessary,
as there is sufficient time to precompute these write-backs using
data in the cache. Thus, we design an additional predictor that
works collaboratively with the main store-instruction-based
predictor to cover these write-backs. The challenge is how can
one identify when a cache line has seen its last store and can
be sent for precomputation? We exploit the observation that
updates to PM are usually bursty [18, 21]. As such, if there
has not been any store to a PM location for a while, it is likely
that updates to this location have completed.

Design: To determine the time since the last store-
instruction for a PM address, we integrate a Timeout Predictor
Table (TimeoutPred) into PMWeaver. Each TimeoutPred entry
maps a PM address to a timer that increments every 10 ns.
Once the entry observes an incoming store-instruction to PM,
the timer resets (Figure 17, step Ê). As our profiling result in
Figure 7 has a knee point at around 150 ns, PM write-backs that
happen before this point are handled by the prediction based
on store-instructions, and those happen afterward are handled
by this timeout-based prediction. Once a timer has reached
this 150 ns threshold, PMWeaver predicts this cache line has
seen its last update and will obtain the data from the cache
for PM-support precomputation (step Ë). Predictions made by
this timeout mechanism are validated by the same validator
(Section IV-C) to guarantee correctness. Our timeout-based
prediction is simple but effective (evaluated in Section VI-B5).

VI. EVALUATION

A. Methodology

1) System configuration: We model PMWeaver on the cycle-
accurate Gem5 simulator [61] with the configuration listed in
Table I. We model PMWeaver’s learner and predictor access
latency as the L1 cache latency, and the validator’s latency as
the LLC latency. Note that the size and associativity of each
prediction structure are small. Our design is not sensitive to the
latencies of prediction-structures, as PMWeaver precomputes
the PM-support operations substantially ahead of the write-back
(Section VI-B6). We ensure that the metadata of PM-support

TABLE I: System configuration.

CPU Out-of-Order Cores, x86, 3.0GHz

L1 I/D Cache 32kB each, 8-way, private, 1 ns

L2 Cache 128kB per-core, 4-way, private, 5 ns

L3 Cache 2MB per-core, 16-way, shared, 20 ns

DRAM 16GB DDR4 2400MT/s

PM
16GB PCM, with ADR support, 533MT/s:
tRCD/tCL/tCWD/tFAW/tWTR/tWR =
48/15/13/50/7.5/300 ns [33, 51, 60]

Parameters of AES-128: 40 ns, SHA-1 40 ns [49]
PM-Support Operations Counter cache: 256kB, Integrity cache: 256kB

PC-Path Length 32

Store History Buffer 16-way 512 entries (8.75kB), per-core, 1 ns

Predictor Table 32 entries (4.5kB), per-core, 1 ns

Timeout Predictor Table 4 entries (34B), per-core, 1 ns

Pending Prediction Table
Index Generator: 128 entries (1.1kB),
Pending Predictions: 8 entries (0.57kB),
both per-core, 1 ns

Prediction Result Buffer 256 entries (38kB), (16 unique addresses, and
16 data entries per address), per-core, shared, 5ns

TABLE II: Workloads for evaluation.

Name Name
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ns B-Tree

L
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-le
ve

l Linked List
C-Tree Hashmap Low-Level
RB-Tree Array Swap
Skiplist TATP
Hashmap TX TPCC

operations are consistent with the corresponding persistent data,
by persisting modifications to metadata with a write-through
approach, similar to prior works on secured PM systems [34].

2) Workloads and design points: We evaluate workloads
from the widely-used PMDK library [12] to cover the
mainstream programming paradigm for PM systems, and
popular workloads used in prior works [21, 33, 51] (Table II).
Moreover, as PMWeaver transparently predicts the write-backs
in hardware, it needs no modification to the workloads. We
evaluate the following design points with two different sets of
PM-support operations (introduced in Section II-B):

• Original: a system without any PM-support operations.
• Enc+Veri: a baseline system with PM-support operations

for security, using counter-mode encryption and integrity
verification.

• Dedup: a baseline system with a PM-support operation that
performs deduplication.

• Enc+Veri/Dedup w/ PMWeaver: systems with PMWeaver to
mitigate PM-support latencies.

In the rest of the evaluation, the term “coverage” refers to
the number of correctly predicted PM write-backs over the total
PM write-backs, and “accuracy” refers to the number of useful
predictions over the total number of predictions generated.

B. Evaluation Results

1) Overall performance: We start with comparing the overall
performance of PMWeaver to all the design points described in
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Fig. 18: Performance of PMWeaver.
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Fig. 19: Performance breakdown of PMWeaver.

Section VI-A. Figure 18 shows the execution time of two PM-
support systems with and without PMWeaver, normalized to the
original system without any PM-support operations. Integrating
Enc+Veri and Dedup introduces 2.54× and 1.87× slowdown
over the original system on average (Geo-mean), respectively.
With PMWeaver, the slowdown is reduced to 1.56× and 1.49×.
As such, PMWeaver achieves 1.63× and 1.26× speedup over
the no-prediction baselines.

2) Performance breakdown: Figure 19 further breaks down
the speedup from PMWeaver. The y-axis is the speedup of
PMWeaver over the baseline design with PM-support operations
for Enc+Veri and Dedup. First, we observe that workloads
based on low-level primitives (right five) have higher speedup
compared to those based on transactions (left five). This
is because low-level-based workloads write back data more
frequently, and thus mitigating PM-support latency gains more
benefit. Second, we demonstrate the fraction of speedup that
comes from predicting only the address (i.e., there is only
precomputation for address-dependent PM-support operations)
as indicated by the shaded area at the bottom of each bar.
The breakdown shows that the Enc+Veri system significantly
benefits from the address-only prediction, whereas the Dedup
system mainly benefits from data prediction. The reason is that
the encryption and integrity verification mechanisms heavily
depend on the address, whereas the deduplication mechanism
mostly depends on the data. We conclude that both the address
and the data prediction methods are effective in PMWeaver.

3) Comparison with software-based precomputation: We
compare with a recent work, Janus [33], that precomputes PM-
support operations using software hints. We obtain annotations
directly from Janus for the workloads based on low-level
primitives (right five). And, we annotate both the application
and the underlying library code for workloads based on PMDK
transactions (left five), following the method described in Janus.
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Fig. 20: PMWeaver vs. software-based precomputation [33].
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Fig. 21: Percentage of PM write-backs correctly predicted.

Figure 20 shows that the software-based solution from Janus
provides less performance benefit than PMWeaver in most
cases. On average, Janus provides 1.25× and 1.13× speedup in
Enc+Veri and Dedup—20.9% and 9.0% slower than PMWeaver.
The software-based solution is less effective due to the limited
scope of annotation within functions or loops, as precomputing
across dynamic control-flows is difficult. Overall, PMWeaver
provides better performance compared to Janus, without the
need for software modifications.

4) Prediction coverage: Figure 21 presents the prediction
coverage of PMWeaver. The shaded area in the bottom
represents the fraction of prediction where both address and
data are correctly predicted, while the remaining solid bar
represents the correct prediction only for addresses. First, we
observe that both PM-support systems have reasonably high
prediction coverage—on average PMWeaver covers 50.6% and
49.9% PM write-backs in two systems, respectively. Second,
both systems have similar prediction coverage as the prediction
mainly depends on the store-instructions and write-backs.
Third, the coverage for address prediction is higher than the
data prediction (81.16% for address, where 49.90% for data).
Predicting data is more difficult than addresses, as a cache
line consists of 16 data chunks and each of them needs to be
predicted correctly to predict the data of the whole cache line.

5) Timeout-based predictor: PMWeaver employs a timeout-
based predictor (Section V-D) that works alongside the main
predictor. Figure 22 shows the breakdown of the prediction
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coverage (address and data), where the shaded area at the
bottom indicates the fraction from the timeout-based predic-
tion. On average, prediction from store-instructions provides
42.15% coverage (address + data), and the timeout-based
prediction adds 8.48% coverage on top.

6) Prediction timeliness: Figure 23 shows the average time
between the point when the prediction is generated (with
all address and data fields complete) to the point when the
actual PM write-back reaches PMWeaver’ validator. First,
we notice that the time gaps are almost identical in both
systems. Second, the prediction-to-write-back time gap in
most workloads (average 9976 ns) is more than sufficient
to precompute all PM-support operations. On average, only 7%
of predictions are validated too late for their precomputations
to be beneficial. Hashmap Low-Level is an exception that has
a time-gap of 155 ns. The reason is that it uses direct pointer
updates to ensure crash consistency instead of logging, causing
the write-backs to happen immediately after the address/data
become available. Nonetheless, there is still a significant
speedup of 1.76× and 1.09× in the two systems, respectively, as
precomputation can overlap a large fraction of the PM-support
latency. Figure 24 shows the reduction in the average PM-
support latencies with precomputation (3.27× and 1.87× lower
in the two systems, respectively). We expect that PMWeaver
will still benefit PM-support operations that take longer latency.

7) Multithreaded evaluation: To demonstrate the scalability
of PMWeaver, we show the speedup when 1, 2, and 4 instances
of the workloads are running concurrently on separate cores in
Figure 25. The per-core and shared PMWeaver structures are
scaled up linearly to the number of the cores to accommodate
the increased write traffic. Overall, PMWeaver maintains its
performance benefits across multithreaded scenarios.

8) Sensitivity analysis: Figure 26a scales the PC-path
length from 4 to 64 and presents the corresponding cov-
erage (correctly predicted writes/total writes) and accuracy
(correctly predicted writes/total predictions). As the previous
evaluation has shown near-identical coverage in two different
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PM-support systems, we only demonstrate results from the
Enc+Veri system. We observe that as the length of the PC-
path increases, the coverage slightly decreases due to fewer
matching paths but the accuracy gets better because of fewer
incorrectly triggered predictions. Overall, we choose a PC-path
length of 32 as it reaches a good balance between the prediction
coverage and the accuracy.

With the PC-path length being 32, Figure 26b presents the
speedup of PMWeaver while scaling the other PMWeaver
buffers (listed in Table I) from 0.25× to infinity. Overall, the
speedup increases with larger sizes. However, the speedup curve
is flattened once the size reaches 1×, even compared with the
ideal scenario. Therefore, as a trade-off between performance
and hardware overhead, we choose the sizes listed in Table I.

9) Area overhead: Table I lists the size of the major
hardware structures PMWeaver introduces for prediction. The
learner and predictor structures have a storage overhead of
15.2 kB (per core), and the validator has an overhead of
38 kB (shared). With 22 nm technology [62], the per-core
area overhead is about 0.24 mm2, and the shared area overhead
is 0.65 mm2. Compared to the area of the CPU, PMWeaver
only takes 3.1% extra area. Considering the significant speedup,
we believe that the area overhead from PMWeaver is small.

10) Energy overhead: Figure 27 presents the energy break-
down of PMWeaver. We model the hardware overhead of
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PMWeaver with McPAT (22 nm technology) [63]. We follow
the energy cost parameters in [64, 65] and scale down to 22nm
to model the PM-support overhead, and take mispredictions into
account. On average, PMWeaver saves 38.5% and 20.4% energy
for Enc+Veri and Dedup as compared to the baseline. More
specifically, the average overhead from PMWeaver’s prediction
structure is only 2.9%, while mispredictions and stale-prediction
invalidations incur 1.6% energy overhead. We conclude that,
even accounting for the energy overhead of mispredictions,
PMWeaver substantially improves energy.

VII. RELATED WORKS

In this section, we discuss the related works in the area of
PM systems, and data value and write prediction.

Crash consistency support for PM: There have been an
assortment of proposals and implementations that ensure a
consistent recovery of persistent data on PM. Examples include
persistency models [18]–[20], hardware transactions [66, 67],
software libraries [12, 13, 68], and PM file systems [7, 8, 10,
11]. These crash consistency solutions tends to write-back data
to PM in certain order [18, 21, 23]–[26, 69]–[72]. Therefore,
the write-back latency is added to the critical path. PMWeaver
can significantly reduce the overhead of writes without any
software modification.

PM-support operations: PM systems also require backend
memory operations that serve a variety of purposes. Due to
the persistence property of PM, security-aware systems apply
encryption and integrity verification to prevent unauthorized
access and tampering to the data on PM [34]–[40]. PM
systems also adopt deduplication and compression techniques
to overcome the bandwidth limitation and achieve more
efficient storage [45, 48, 53]. To mitigate the limited life
time of PM devices, wear-leveling and error correction are
also necessary for a practical PM system [41]–[44]. These
operations, unfortunately further increase the performance-
critical write latency. There have been works that design more
efficient PM-support operations to reduce this latency [23,
34, 49, 50]. To further reduce the latency, a recent work,
Janus proposes to precompute these operations using software
hints [33]. However, such solution breaks the system abstraction
and degrades portability and increases programmer’s effort.
In comparison. PMWeaver can hide most of the PM-support
latency without requiring any software modification.

Value and write prediction: Value prediction has been
used to break the dependency of latency-critical reads for
better forward progress [73]–[77], and predict data-dependent
branches [78]. Our work is different in two major aspects.
First, PMWeaver predicts the PM write-backs to mitigate the
performance-critical write latency. Second, the prediction uses
data values written by addr/data-generating store-instructions,
instead of directly predicting the values the stride or context.
Prediction based on instructions is widely used for purposes
such as prefetching [79, 80], memory disambiguation [81],
cache replacement [82]–[85], and branch prediction [86, 87].
PMWeaver is different as it predicts not only the address
but also the data values, and further combines the value

predictions from multiple store-instructions to perform a cache-
line-sized write prediction. Nonetheless, existing address and
data prediction methods of prior works can be integrated into
PMWeaver to achieve a better coverage and accuracy. For
example, next pointer prediction [88]–[90] can improve the
accuracy of PM address prediction, and address-value-delta
based prediction [91] can augment PMWeaver to calculate next
address/data predictions from previous predictions.

VIII. CONCLUSIONS

Software for persistent memory (PM) needs to ensure a
consistent recovery in event of a failure, by carefully ordering
writes to PM. Thus, the write-back latency is placed on
the critical path. On the hardware side, there are different
types of PM-support operations, such as encryption, integrity
verification, compression, and deduplication, that are necessary
but increase the write latency. We observe that the address
and value associated with PM write-backs are often available
in prior store-instructions. Therefore, we propose PMWeaver
that learns the correlation of address and data of PM write-
backs with prior store-instructions, and predicts the address
and data of write-backs to precompute these PM-support
operations off the critical path. On average, PMWeaver predicts
81.16% addresses and 49.90% of data of PM write-backs in
common PM workloads, and provides 1.63× and 1.26× speedup
over a no-PMWeaver baseline by precomputing two types
of PM-support operations: a combination of encryption and
integrity verification, and deduplication.
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APPENDIX

A. Abstract

PMWeaver is implemented using Gem5 [92], including the
predictor structures, the PM-support operations, and support
for PMDK libraries [12]. The artifact includes the simulator of
PMWeaver that is implemented on top of Gem5 [61], PMDK
modified to work with Gem5, and PM workloads from previous
works [33, 36, 51]. The artifact also includes the scripts to run
and plot the results in this paper.

B. Artifact check-list (meta-information)
• Program: PMWeaver
• Compilation: gcc/g++-5
• Metrics: Speedup using PMWeaver, workload execution time

with or without PMWeaver, data and address coverage of
PMWeaver’s predictions.

• Output: Performance plots for PMWeaver.
• Experiments: (1) Slowdown due to Encryption and Verification,

Figure 1. (2) Time gap between a PM update and corresponding
write-back, Figure 7. (3) PMWeaver execution Time Normalized
to Original, Figure 18. (4) Performance breakdown of PMWeaver,
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Figure 19. (5) Data Prediction Coverage, Figure 22. (6) Average
PM Support Latency (ns), Figure 24.

• Disk space required: 16 GiB
• Recommended system memory: 32 GiB+
• Recommended CPU count: 16+
• Time needed to prepare workflow: 10 CPU hours
• Time is needed to complete experiments: 50 CPU hours
• Publicly available: Yes
• Code license: Revised BSD License
• Archive DOI: 10.5281/zenodo.5136539

C. Description
1) How to access: We maintain a GitHub repository for the

artifact at https://pmweaver.persistentmemory.org. There is also
an archived version at https://doi.org/10.5281/zenodo.5136539.

Software dependencies: This artifact depends on the
following environment.
• Docker 20.10.7 or higher
• Ubuntu 18.04 or higher
• Python 2.7, Python 3
• g++-5
• gem5:
swig, m4, libprotobufdev, libboost-all-dev
libgoogle-perftools-dev, protobuf-compiler,

• pmdk:
libdaxctldev, libjemalloc1, libjemallocdev,
libndctldev

• Python2 packages: scons, six, python-config
• Optional: Anaconda and task-spooler

Data sets: We evaluated the following workloads.
• PMDK libpmemobj examples: BTree, CTree, Skip List, and

Hashmap-TX [12]
• Array Swap, Hashmap Low-Level, Linked List, TATP and TPCC

[33]

D. Installation
This artifact has the following structure:
• Dockerfile: Dockerfile for building PMWeaver with all the

dependencies.
• gem5/: Gem5 with PMWeaver implementation.
• pm_images/: Pre-generated PM images for PMDK
data_store workload.

• pmdk/: Intel PMDK with modifications to run on Gem5.
• janus_workload/: PM workloads from Janus [33].
• scripts/: Scripts to run experiments and plot results.
• scripts/run_part1.py:

Runs experiments for Fig. 1, 8, 18, 22, 23, and 24.
• scripts/run_part2.py:

Runs experiments for Fig. 19.
• scripts/plot_scripts/plot_part1.py:

Generate Fig. 1, 8, 18, 22, 23, and 24.
• scripts/plot_scripts/plot_part2.py:

Generate Fig. 19.
Setup Environment: PMWeaver artifact comes with a

Dockerfile that includes the source code, the dependencies, and
the scripts to run experiments. To use it, please install Docker
from https://docs.docker.com/get-docker/.

Once docker installation is complete, build the PMWeaver
image using the following command from the repository’s root:
docker build -t pmweaver .

Docker would now build gem5, pmdk, and all the included
workloads. Once the image is built, you can access the shell
in the container using the following command:

docker run -i -t -p 8888:8888 pmweaver /bin/bash

E. Experiment Workflow
PMWeaver artifact is setup to run the experiments, generate

the raw simulation data, and then use a separate script to plot
the results in the paper. The experiments are split into two
parts, part-1 and part-2, each of which runs a different set of
experiment and plots a different set of figures from the paper.

The step to run the experiment and plot the correspond-
ing data is automated using the scripts under the directory
scripts/ of the artifact.

Please follow these common directions before starting an
experiment:

1) Scheduling jobs and checking progress: PMWeaver uses
Task Spooler to schedule large number of jobs on a limited
number of CPUs. All the scripts to run the experiments
(scripts/run_*) are set up to use the Task Spooler
correctly. To check the progress of an experiment, you may
run the following command at any time during or after the
execution:
scripts/helper_scripts/check_progress.sh

2) Terminating stale jobs: To make sure all the stray
processes are terminated after an experiment, run the following
script before starting a new experiment:
scripts/helper_scripts/kill_stray.sh

3) Managing container’s lifecycle: While running the ex-
periments, please note that exiting the shell for the docker
container would kill all the processes in that container. Thus,
when running on a local computer, make sure not to exit the
shell. When running over SSH, please use Docker in a GNU
Screen session [93].

4) Generating and viewing plots: After running
an experiment and corresponding script to generate
the plots, figures will be written to the directory
/pmweaver_ae/scripts/plots/. To view the plots,
run the following command:
scripts/helper_scripts/start_server.sh

The plots will then be available at http://localhost:8888/
under the plots/ directory.

F. Evaluation and Expected Result
PMWeaver artifact evaluates the major performance results:

1) Improvement in execution time across workloads (Fig. 18
and 19).

2) PMWeaver characteristics, including prediction coverage
(Fig. 22), prediction timing (Fig. 23) and PM-support
operation latency improvement (Fig. 24).

3) Slowdown with Encryption and Verification PM-support
operations (Fig. 1) and the time gap between a PM update
and the corresponding write-back (Fig. 7).

Before running a script, please execute the following command
to make sure there are no stale jobs:
scripts/helper_scripts/kill_stray.sh
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Part 1: Coverage and Performance Comparison: To repro-
duce the results of Fig. 1: Slowdown due to Enc+Veri, Fig. 7:
PM update and write-back time gap, Fig. 18: Performance of
PMWeaver, Fig. 22 Data prediction coverage, Fig. 23: Time
between prediction and write-back, and Fig. 24: PM-support
latency, please run the following script.

scripts/run_part1.py

To check the progress, run check_progress.sh:

scripts/helper_scripts/check_progress.sh

Once done, all the jobs will show up with the status
“finished”. To plot the results, please run the following
script:

scripts/plot_scripts/plot_part1.py

Part 2: Performance Breakdown: To generate Fig. 19:
PMWeaver performance breakdown, please run the following
script after making sure that there are no active jobs:

scripts/run_part2.py

Once all the jobs are completed, please run the following script
to plot the results:

scripts/plot_scripts/plot_part2.py

G. Experiment Customization

Manually executing workloads: To run Gem5 with
PMWeaver please use the following command with a workload:

/pmweaver_ae/gem5/build/X86/gem5.opt \
/pmweaver_ae/gem5/configs/example/se.py \
--cpu-clock=3GHz --mem-size=8GB --caches \
--mem-type=DDR4_2400_8x8 --l2cache --l3cache \
--cpu-type=DerivO3CPU --l1i_size=32kB \start
--l1d_size=32kB --l2_size=256kB \
--l3_size=2MB -c \
</path/to/workload/binary> \
-e /pmweaver_ae/gem5/env -n 1 -o \
<workload options>

• </path/to/workload/binary>: Path to the workload.
• <workload options>: Cmd line options for the workload.
PMWeaver version of Gem5 also reads the following environment

variables to configure different parameters:
• PATH_HISTORY_SIZE: Sets the length of the path history
• ENABLE_DW: Enables Dedup PM-support operation.
• ENABLE_EV: Enables Env+Veri PM-support operation.
• USE_PREDICTOR: Enables PMWeaver predictions.
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