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ABSTRACT

Persistent memory (PM) allows programmers to bypass the file

system and efficiently manage persistent data directly. As a conse-

quence, the application is now responsible for a non-trivial task—

maintaining data crash consistency. In addition, it is highly desirable

for today’s production-grade storage systems to have fault tolerance

to restore from data corruptions. Systems may provide fault tolerance

through data redundancy. However, direct PM accesses bypass the

system and make the data vulnerable to corruption. Without system-

level support, it is the application’s responsibility to maintain both

crash consistency and fault tolerance, creating a demand for software

tools to alleviate the burden from the application programmer.

Providing fault tolerance is challenging in the absence of system

support because it is difficult to track data updates and efficiently

update data along with its redundancy in a crash-consistent manner.

Existing fault-tolerant mechanisms for PM applications either im-

pose significant programming restrictions to the programmer or com-

promise on the level of protection they provide. This paper designs

and implements Pavise1, a software framework that provides protec-

tion for data within PM applications. Pavise uses a compiler pass to

automatically track accesses to persistent data. It co-designs fault

tolerance operations with the crash consistency mechanism to effi-

ciently update data and its redundancy while maintaining the crash

consistency guarantee. Pavise can be easily applied to existing PM

applications with minimal manual effort and modest overheads. Our

evaluation of common PM applications shows that Pavise achieves

83.2% (with ignore-list) and 70.9% (with conservative tracking)

performance of the current state-of-the-art fault-tolerance software

system, Pangolin. Because Pavise provides both application and li-

brary data with equally strong protection, Pavise can sustain a much

higher error rate of 10−5 as compared to Pangolin’s 10−7.

1Pavise means a large European-style shield. Pavise source code is available at https:
//pavise.persistentmemory.org/.
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1 INTRODUCTION

The persistent memory (PM) technology offers near DRAM-like

performance and disk-like capacity and data persistence, such as

Intel’s Optane PM modules [23] and CXL-based PM [58]. These

PM platforms allow fine-grained access to persistent data, therefore,

exposing the high performance directly to the programmers, garner-

ing a wide interest from both industry and academia [8, 17, 26, 28,

30, 40, 69, 71, 74].

To let programs better leverage the high-performance and byte-

addressability features of PM, the Direct-Access (DAX) mode [66] is

introduced to unify memory and storage. In DAX mode, the program

maps a file backed by PM into its virtual address space, allowing

byte-addressable access that bypasses the OS and file system. How-

ever, as data is persistent, the program is expected to recover to a

consistent state and resume execution in case of a system crash or a

power failure, which is known as the crash consistency guarantee.

Unfortunately, it is hard to provide crash consistency due to the

presence of volatile cache hierarchy [10, 42, 43, 52]. Data must

be persisted to PM in the correct order for the program to recover

to a consistent state after failures. Writing an efficient and crash-

consistent PM program is difficult and prone to errors [16, 42, 43,

52]. Therefore, PM libraries [26, 69] are developed to ease this

burden for the programmer. The libraries will handle all the low-

level direct accesses to PM while the programmer only needs to

access PM through the library.

While maintaining crash consistency is important, persistent data

residing in production-grade storage should also be protected against

corruption. The ability to detect and correct errors in a system is

https://pavise.persistentmemory.org/
https://pavise.persistentmemory.org/
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known as fault tolerance. Errors can appear for various reasons. On

the hardware side, memory errors [20, 64, 68] can lead to incorrect

data, CPU defects [11, 18] may write incorrect results, and firmware

bugs may lead to lost or misdirected writes [27, 34]; while on the

software side, various software bugs such as buggy kernels and file

systems may corrupt data [1, 2, 32, 35, 55, 65, 78]. Errors that occur

in the memory devices can be largely mitigated with techniques

such as ECC [48, 76], Chipkill [9, 77], and wear-leveling [56]. How-

ever, errors that stem from the processor or software systems cannot

be directly detected/corrected by memory-level protections, thus

requiring stronger protections. In a conventional system, data resid-

ing in disks are protected by the system through data redundancy

techniques [14, 46, 50, 53, 57, 72]. PM should receive the same pro-

tection as it is also persistent and is susceptible to various categories

of data corruption [1, 2, 11, 18, 27, 32, 34, 35, 48, 62, 65, 78].

However, the existing file-system-level fault tolerance does not

apply to PM under the DAX mode [72]. This is because reads and

writes in DAX mode bypass the OS and file system, and the system

cannot act on data updates (i.e., compute and update its data redun-

dancy) without knowledge of those updates happening. Therefore,

the burden of maintaining fault tolerance fully lies on the program-

mer, necessitating the creation of software tools to ease this burden.

Providing fault tolerance to PM programs in DAX mode has its

own requirements and challenges. First, the data redundancy (e.g.,

checksum and parity) must be updated in a consistent manner along

with the corresponding data, while the crash consistency guarantee

is being maintained. Consistency only matters for data that become

persistent, therefore, it is unnecessary to perform crash-consistent

updates for every write that has yet been persisted, which will help

reduce overhead. However, only periodically updating the redun-

dancy can lead to scenarios where they become stale and unprotected.

An ideal solution should decide the best timing and method of per-

forming these updates, which is challenging given the complexities

of the consistency guarantees and the performance trade-off.

Second, bypassing the system using the DAX mode means losing

the ability to track which data are modified and require updates

on redundancy. It is therefore necessary to identify and track dirty

pieces of data. This can be done by leveraging the dirty bits in the

existing memory paging system [35]. However, the system will then

be dealing with data at page granularity, losing the benefit of fast

fine-grained access that PM brings. Fine-grained tracking may be

achieved by requiring the programmer to use a defined interface

when developing the application. All PM accesses will be mediated

by this interface. The required information such as the dirtiness and

boundaries of data will be provided by the programmer through

the programming interface and passed on to the fault tolerance

mechanism. Unfortunately, such an approach requires significant

manual effort and is not easily applicable to existing workloads [35].

Prior works have attempted to address these challenges. Hardware-

based solutions, such as Tvarak [34], require dedicated hardware de-

signs. Thus, those hardware-accelerated solutions are not considered

in the scope of this work. On the other hand, existing fault-tolerant

software solutions [35, 78] either restrict the programming model

of the application and requires manual modifications to the code, or

compromise the level of protection. Pangolin [78] is a PM transac-

tion library that provides fault tolerance but requires users to use its

API and programming model. For example, there have been attempts

to adapt a PM-based Redis to Pangolin, but this modified more than

70% of the PM-related code [35]. Another prior work, Vilamb [35],

does not restrict the programming model but performs asynchronous

data redundancy updates to overcome the performance overhead.

Thus, it can lead to time intervals in between updates in which the

data redundancy is stale, and the system will be vulnerable to data

corruption during these periods. Ideally, programmers should enjoy

the full benefits of fault tolerance transparently, which motivates the

creation of an automatic framework to provide fault tolerance in a

plug-and-play fashion for existing systems. In this work, we intro-

duce Pavise, a new software framework that automatically provides

fault tolerance to PM applications.

PM access tracking. We observe that instructions that access PM

can be effectively identified by a compiler pass, which can then

be tracked via instrumentation. While the compiler does not have

precise knowledge about whether an instruction will operate on

volatile or persistent memory during runtime, it can insert extra code

(i.e., if-statements on memory instructions’ address) to check where

the address belongs to during runtime. To guarantee all PM writes are

tracked, all store instructions will need to be instrumented. To reduce

the performance overhead of this conservative method, we make two

optimizations. First, we make the distinction between application

code and PM library code. As mentioned earlier, writing low-level

PM code is error-prone and is often offloaded to PM libraries. Thus,

applications tend to not access PM directly but instead using libraries.

Therefore, it is sufficient to track PM updates within application code

according to the use of library functions and PM primitives. Second,

for sophisticated PM library code which may mix volatile and PM

accesses, we conservatively track all memory instructions. To reduce

the overhead, an optional ignore-list of functions that would never

access PM may be provided by the programmer, wherein store

instructions would not be instrumented. This technique allows us to

track PM updates with minimal programmer’s burden and without

any OS/hardware changes. Based on this key insight, Pavise tracks

PM updates at load/store granularity and stores checksums and

RAID-4-style parity blocks for fault tolerance.

Efficient and crash consistent updates. As noted previously, it is

challenging to efficiently update data redundancy while maintaining

crash consistency. We observe that the correct persistent state of the

data redundancy is also tightly coupled with crash consistency. Since

both fault tolerance and crash-consistency-related operations aim to

maintain a consistent and recoverable state of the PM region, any

operation can be delayed until its effects are persistent (committed

to PM). Leveraging this idea, Pavise atomically redirects all PM

operations to a volatile shadow copy of the under-modification PM

regions and commits all updates and their redundancy atomically

to the original PM region via redo-logging. The programmer only

needs to mark out the failure-atomic boundaries. This effectively

reduces the overhead from providing fault tolerance but at the same

time, maintains the protection and consistency guarantees.

We implement Pavise as a framework consisting of (i) a com-

piler pass, and (ii) a runtime library. We evaluate Pavise across

seven PMDK benchmarks [26], and four real-life workloads includ-

ing a PM-based Redis [60] and two different implementations of

PM-based memcached [13]. We also perform an error injection ex-

periment to evaluate Pavise’s tolerance against errors and compare

it with that of Pangolin. We found that Pavise has equivalent or a
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better error-tolerance than Pangolin in our tested error rates (10−9

to 10−4). In summary, this paper makes the following contributions.

• Providing fault tolerance to a PM application requires a redesign

of its implementation. To ease the programmer’s burden, we im-

plement a compiler pass that automatically tracks PM-access in-

structions and a co-design of fault tolerance and crash consistency

that provides efficient and recoverable redundancy for PM data.

• Based on these two key mechanisms, we implement Pavise, a

framework that provides fault tolerance for PM applications with

minimum programmer effort.

• Pavise achieves 83.2% (with ignore-list) and 70.9% (with conser-

vative tracking) performance of the state-of-the-art fault-tolerant

PM library, Pangolin [78], when comparing Pavise’s directly con-

verted applications with Pangolin’s heavily optimized versions.

We thoroughly test Pavise’s fault tolerance by injecting errors. As

Pavise covers not only the application data but also the underlying

PM library with the same level of redundancy, it is able to sustain

a high error rate of 10−5 as compared Pangolin’s 10−7.

2 BACKGROUND ON PERSISTENT MEMORY

Persistent Memory (PM) is a class of memory technology that offers

near-DRAM access speed with disk-like capacity and persistence,

such as Intel’s recently-launched Optane DC Persistent Memory [23].

These PM modules sit alongside DRAM and can be accessed at

byte granularity. These favorable characteristics have attracted wide

interest in the industry and academic research [8, 17, 26, 28, 30, 40,

69, 71, 74].

There are mainly two ways to take advantage of PM. First, PM can

be treated as a faster storage device and accessed through the file sys-

tem interface (e.g., read() and write() system calls) [8, 12, 33, 71].

This method makes PM compatible with most existing programs but

still keeps the intermediary of the OS and file systems. The second,

more efficient way is to perform loads and stores from the user-space

application, by directly accessing PM. This direct access to PM is

enabled by the Direct-Access (DAX) support [66]. After mapping a

PM-backed file (PM pool) to the program’s virtual memory space,

the program can bypass the OS and file system and gain the full

benefits of both high performance and persistence. However, the

cost is programmability. A PM pool is mapped into the program’s

virtual address space through mmap, wherein a PM object is located

with a fat pointer—containing a base pointer to its PM pool and an

offset within the pool. The base pointer which represents the start

address of the mapping of the pool may be different across pro-

gram executions, or within an execution if mapping is done multiple

times. As such, pointer management in PM systems is more complex

than normal volatile pointers [61]. This leads to the common use of

the specialized libraries [7, 26, 69] that abstract away the low-level

memory management (see Section 4.1 for details). Furthermore, pro-

grammers need to maintain crash consistency by themselves rather

than relying on file system support. Crash consistency refers to the

program’s ability to recover in a consistent state and resume ex-

ecution, in the case of a system crash or power failure. Software

systems that manage persistent data are expected to provide the crash

consistency guarantee.

Application
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Sources of error:

FS/kernel bugs

Processor Device Errors
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Medium errors

CPU
Device 

Controller
PM 

Medium
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[35, 78]
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[1, 2, 27, 32, 34, 55, 65]

[48, 62, 75]

Figure 1: Sources of errors in the system stack.

Maintaining crash consistency is challenging due to CPU’s caching

[16, 17, 37, 41–43, 49, 54]. The order in which data becomes persis-

tent may be different from the intended program order. As a result,

without carefully manipulating the ordering, the state of the data at

the point of a crash may not be recoverable. To enforce the order

of persists, instructions such as CLWB and SFENCE from x86 [21] are

used. CLWB allows the program to manually flush a cache line while

SFENCE is a memory fence that orders CLWB instructions with respect

to other CLWB and store instructions. For simplicity, we refer to a

sequence of a CLWB and an SFENCE as a persist_barrier which

ensures that a cache line is persisted before future writes.

To alleviate the programmer’s burden on maintaining crash con-

sistency, multiple PM libraries [4, 7, 15, 17, 19, 26, 69] have been

developed. These libraries abstract away the low-level details of

PM programming and the direct management of persistent mem-

ory regions. They manage PM on behalf of the programmer and

provide higher-level APIs such as transactions [26, 69] to make

crash consistency easier to maintain. Transactions utilize undo or

redo logging to allow programmers to specify a piece of code to

run atomically in case of a failure, thereby achieving crash consis-

tency [4–6, 26, 29, 36, 69].

Even with various programming support for PM systems, prior

works have shown that implementing a correct and efficient PM

program (i) is difficult, (ii) requires expertise, and (iii) often involves

trade-offs between performance and programmability [10, 16, 41–

43, 51, 61]. The difficulty only exacerbates after adding the fault-

tolerance requirement.

3 MOTIVATION

This section first introduces the fault tolerance guarantee in PM

systems and then motivates the demand for a framework that auto-

matically provides strong fault tolerance to PM systems in a crash-

consistent manner.

3.1 Fault tolerance in PM systems

The crash consistency guarantee ensures data recovery in case of a

failure, while the fault tolerance guarantee is another critical aspect

that ensures data correctness in case of errors. Storage systems re-

quire fault tolerance to protect persistent data against errors. Figure 1

shows how data from the application travels through the system

stack. Errors can be caused by both hardware and software and

originate at multiple locations in the stack. On the software side,

although writes bypass the file system under DAX-mode, a buggy

kernel/FS may interfere with the application’s address space which

contains the PM region and corrupt data [35, 78]. On the hardware

side, CPUs are susceptible to defects such as processor device errors

and early life failures [11, 18], causing them to write corrupted data
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Figure 2: Application accesses PM via (a) FS and (b) DAX.

to PM; device controllers may have buggy firmware leading to lost

or redirected writes [1, 2, 32, 34, 55, 65]. There have been reports

where a potentially buggy firmware rendered corrupted data in In-

tel’s Optane PM [27]. The PM storage media itself is also subject to

errors and random bit flips, corrupting the data [48, 62, 75]. In this

work, we follow the error model in which these various types of er-

rors result in the outcome that corrupted data is read from or written

to PM. The same error categorizations and modelling were done by

prior work [35, 78]. Regardless of their sources, the errors manifest

themselves as data belonging to the program being corrupted. In our

fault tolerance evalations (Section 6.2.2), we simulate the errors as

corruptions of data at random locations and different sizes within

the program’s PM address space. Techniques such as ECC [48, 76]

and Chipkill [9, 77] can only mitigate errors that stem from the PM

media. However, errors from the application, CPU, and firmware

are not protected [34, 35, 78]. For example, a buggy firmware may

write incorrect data to PM but ECC is calculated on top of such

incorrect data.

For stronger protection, system-level checksums and data redun-

dancy (e.g., parity) need to be maintained. Such techniques are

widely used in various storage systems [14, 38, 46, 50, 53, 57, 67,

72, 79]. We believe PM systems deserve the same level of protection.

PM maintains data in a persistent state. Therefore, PM is no

exception when it comes to the demand for fault tolerance [34, 35,

72, 78]. However, existing systems that provide protection for both

traditional hard drives [57, 79] and PM [72] will not work under

DAX-mode. Figure 2 shows two ways an application can access

PM. Conventionally, when the application opens a PM file, it may

access PM through standard system calls (e.g., POSIX) as shown

in Figure 2a. The accesses will go through the file system, and if

the file system supports fault tolerance as a feature, it will store

system-level redundancy (e.g. block-based checksums and parity)

for the application data. In the DAX mode, the application accesses

PM directly, where loads and stores from the user-space application

bypass the OS and the file system, as shown in Figure 2b. As the

file system is unaware of any accesses, it is unable to mediate data

transfers and provide real-time fault tolerance. Therefore, persistent

data will be unprotected against errors that occur during runtime,

when operating in DAX mode. This leaves the burden of maintaining

fault tolerance fully on the programmer, which in turn creates the

demand for software tools that can lessen or eliminate this burden.

Maintaining fault tolerance requires having the ability to perform

error detection and error correction. The former can be achieved by

Csum(0)

Data in PM

Checksum (data)

Time t tt = 2t = 1 t = 3

Data in cache

0

0

Invalid

0 or 1

1

Csum(1)

1

1

Data is modified Data is persisted

Not recoverable

Crash

Figure 3: Challenge in providing crash consistency and fault

tolerance. Checksum (Csum()) and data must be consistent.
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  TX_ADD(hashmap->count); // initially count = 1
  TX_ADD(hashmap->entry); // initially entry = 1
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0
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Ⓕ
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Figure 4: (a) Example code accessing PM using transactions (b)

Timeline of PM data and their redundancy updates.

storing checksums of data while the latter can be achieved by tech-

niques such as RAID [53] (e.g., RAID-4 uses block-level striping

with a parity disk). When a PM location is being updated, check-

sums will need to be updated as well to avoid being stale. And, they

need to be verified at some point later when the program wishes to

detect potential data corruptions before using the data. Similarly,

data redundancy such as parity blocks used by RAID will need to

be updated together with the data. For PM applications, the lack

of file system support under DAX mode makes it necessary for the

application to track the changes to persistent data and update the

checksum/parity in a consistent manner, both of which are further

complicated by the need for crash consistency. While a manually-

crafted solution may solve the problem for one application, it is not

a practical solution if we want to apply it to a multitude of work-

loads. Therefore, automatic solutions are preferred. In summary, the

following requirements are needed for a fault-tolerant PM system to

be widely adopted:

(1) Efficiently update dirty data along with its redundancy (check-

sum and parity) and maintain crash consistency.

(2) Provide the above features in a mostly automated way, with

minimal programmer’s effort.

3.2 Challenges in Providing Fault Tolerance

This section discusses the challenges associated with satisfying the

requirements for a fault-tolerant PM system.

Challenge 1: Crash consistency and performance overhead. We

find that the redundancy must be consistent with data at all times for

correct recovery. Figure 3 demonstrates the procedure of updating

a persistent location (parity is omitted for simplicity). If a crash

happens at t = 2, the data may have been updated but the checksum
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int hm_tx_insert(...) {......
  TOID(struct buckets)buckets=

D_RO(hashmap)->buckets;
  ......
  TX_BEGIN(pop) {

TX_ADD_FIELD(D_RO(hashmap)
  ->buckets, bucket[h]);

  TX_ADD_FIELD(hashmap,count);
TOID(struct entry) e=
  TX_NEW(struct entry);
......
D_RW(buckets)->bucket[h]=e;
D_RW(hashmap)->count++;

  } TX_END
  ......}

int hm_tx_insert(...) {......
  TOID(struct buckets) buckets=

hmap->buckets;
  struct buckets *bkts=

pgl_open_shared(buckets.oid);
  ......
  PGL_TX_BEGIN(pop) {

hmap = pgl_tx_add(hmap);
bkts=pgl_tx_add_range_shared(
  bkts, ......);
struct entry *e=
  pgl_tx_alloc_open(sizeof
  (struct entry),......);
......
bkts->bucket[h]=(TOID(struct
  entry)) pgl_oid(e);
count += 1;
hmap->count = count;

  } PGL_TX_END
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

(a) (b)

Read PM objects

Modify

Backup

Figure 5: Comparison of hashmap insert function between (a)

the original version, and (b) Pangolin [78].

is not. Therefore, the checksum is stale and inconsistent with data

upon recovery. While ensuring crash consistency is necessary, a

naive update scheme can cause major performance degradation.

Figure 4a shows a code snippet updating a hashmap entry using a

transaction, where the old version of the data is backed up in an undo

log using TX_ADD, where each TX_ADD contains persist_barrier’s

to persist the logs. Figure 4b shows a timeline indicating the value

of the data and checksum/parity after each operation, where each

circled letter represents an update. Naively performing all the check-

sum/parity updates in-place before all the persist barriers will bring

a significant performance overhead. At the same time, all data and

the corresponding checksum updates need to be atomic to maintain

crash consistency, introducing extra programming difficulties. There-

fore, the first challenge is how can one devise a checksum update

scheme delivering high performance as well as providing the fault

tolerance and crash consistency guarantees.

Pangolin [78] is a prior work that attempts to overcome this chal-

lenge. It is a transactional library that provides fault tolerance to

PM programs. Pangolin’s solution to the crash consistency and per-

formance challenge is to perform all data and checksum updates

atomically at the end of a transaction via redo-logging. This will re-

duce the number of persist_barriers when updating checksums,

and make the atomic update more efficient. However, Pangolin has

two major limitations. First, Pangolin’s fault tolerance protection is

not uniform—some data may be more vulnerable than others (see

Section 6.2.2 for details). Second, it is a tailor-made library that

requires the program to use its programming model and interface.

This can cause significant inconvenience when the user tries to adapt

existing workloads to Pangolin.

Challenge 2: Automation of fault-tolerance support. The check-

sum and parity updates require the knowledge of which data are

updated at what times. However, DAX-mode file systems allow

programs to directly access the memory without the file system.

Therefore, the second challenge is how can one automatically iden-

tify and track dirty data in the absence of file system support.

Pangolin’s solution to tracking is to let the application explicitly

convey the required information (PM objects’ address and size) to

the fault-tolerance mechanism via Pangolin’s API. However, this

solution requires a lot of manual effort and code changes. Thus, it

cannot be easily applied to a wide variety of real-world applications,

potentially limiting its practicality and impact. Figure 5 compares

the original version of a hashmap insert function (hm_tx_insert())

with the manually-modified version that is based on Pangolin. The

function first reads the PM objects and then starts a transaction that

backs up these PM objects to an undo-log, and finally updates them

in-place. When adapting to Pangolin, the code is heavily modified

(as highlighted in Figure 5), as the interface that opens/reads/mod-

ifies objects is different. It is worth pointing out that the example

in Figure 5 is transaction-based, which makes it easier to adapt to

Pangolin. Other workloads can require a large portion of the code

to be rewritten. For example, Ketaja et al. [35] changed more than

70.04% of the PM-relevant, effective lines of code (eLOC) in Redis

to adapt to Pangolin. If the workload directly manages PM with

low-level primitives (e.g., CLWB and SFENCE [21]), all the code re-

gions related to PM need to be re-implemented. We conclude that

adapting a workload to a fault-tolerance library requires a thorough

understanding of the program and a careful re-implementation.

Vilamb [35] does not require significant code change by utilizing

page-based checksums. However, in order to reduce overhead, Vil-

amb only updates checksums periodically, leaving data unprotected

between updates. In summary, existing works cannot provide a so-

lution that is directly applicable to existing PM applications with

minimal manual effort, without compromising the level of fault toler-

ance. Therefore, it is desirable to have a highly automated framework

that provides strong fault tolerance to the user’s program.

4 PAVISE: KEY IDEAS

To address the aforementioned challenges, we design and implement

Pavise, a framework that provides fault tolerance to PM applica-

tions. Pavise requires minimal manual programming effort while

still providing strong fault-tolerance protection and maintaining

crash consistency.

4.1 Automatic Tracking of Modified PM Data

As discussed in Section 3.2, a coarse-grained tracking mechanism

can result in high performance overheads but fine-grained tracking

introduces extra manual effort. Ideally, we would like to have the

benefits from both worlds—low performance overhead but high

automation. We observe that PM operations can be narrowed down

to a few primitive forms, most of which can be extracted by the

compiler. PM operations in PM applications (at least those that are

publicly available [26, 40, 49, 60]) are in the following forms:

• Regular memory instructions, e.g., store, clwb/clflush, and sfence.

• Call instructions to memory-movement functions, such as memcpy

and memset that modifies a chunk of memory.

• Atomic instructions that access synchronization primitives, such

as compare-and-swap (CAS), or synchronization functions, such

as mutex for PMDK’s pool [26].

Given the categories of methods (instructions and functions) that

access PM, a compiler pass can identify these PM-modifying meth-

ods and automatically insert code to track their modifications. How-

ever, there is a new challenge—the compiler pass cannot determine

whether an instruction operates on PM or DRAM at compile time.

One way is to conservatively instrument all instructions and

check whether they access PM or DRAM at runtime by injecting
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if-statements on the addresses. However, the drawback is the per-

formance overhead. To mitigate the overhead, we perform two opti-

mizations, applied to different parts of the program. As discussed in

Section 2, PM accesses within most applications are offloaded to a

PM library. The first optimization we perform is to precisely instru-

ment PM instructions within the application code, according to the

use of PM library methods (e.g., direct read/writes to PM objects via

D_RW() in libpmemobj [25]) and primitive functions (e.g., memory

copy via pmem_memcpy() in libpmem [24]). The second optimiza-

tion is applied to the sophisticated PM library code, where there

can exist a mix-use of methods that access volatile and persistent

memory. We first provide a conservative method that tracks all mem-

ory instructions. On top of that, we allow the programmer to supply

an ignore-list of instructions that would never access PM. Those

instructions within the list will not be instrumented. The ignore-list

can be obtained from the library documentations and library func-

tions profiling. In summary, Pavise tracks all store instructions in the

PM library unless it is on the ignore-list and tracks all PM-accessing

functions in the application code, to guarantee correctness. Pavise

computes and verifies checksums based on the PM data it tracks,

confirming the correctness of instruction tracking at runtime.

With the mechanisms above, the entire process of tracking PM

modifications can be done automatically (unless an ignore-list is

needed) and efficiently with our compiler pass. Therefore, the en-

gineering effort required to port an existing PM application to use

Pavise is minimal, especially compared to prior work. The user only

needs to add commit points, modify their build configuration to link

their program with the Pavise library, and run Pavise’s compiler pass.

Methods of adaptation from previous work such as Pangolin [78]

would require extensive change to allocation and access functions,

as shown in Figure 5.

Note that Pavise’s protection scope is the DAX-mmapped PM

region, which is directly managed by the PM program. Other data

such as metadata belonging to the file system is instead protected

and managed by the file system, whose protection complements that

of Pavise. Furthermore, Pavise can detect and correct corruptions

or undesired memory modifications originating outside of the PM

program, but issues from the PM program itself, such as a bug, are

not within the scope of Pavise. These programming issues can be

detected by prior testing works for PM software [16, 42, 43, 52].

4.2 Co-design of Fault Tolerance and Crash

Consistency

We observe that the validity of data is determined by the crash

consistency semantics of the application. The example of Figure 4a

performs a failure-recoverable insertion operation to a hash table

(hashmap), where updates at lines 4 and 5 are not considered valid

until the procedure (e.g., a transaction) completes. Therefore, an

ideal solution is to perform all updates atomically at the end of the

transaction, as the operations marked in blue demonstrate. More

generally, the fault tolerance guarantee only needs to be enforced

for the consistent and recoverable version of the persistent data.

If an instruction does not affect the consistency of the persistent

state as it completes, there is no need to immediately update its

redundancy. Rather, it can be delayed until its modification becomes

a consistent version in PM (i.e., committed to PM). We observe that

Application

Shadow Redo Log

PM
D: Data

D

D
CD

C
Redirect

C: Checksum 
      & Parity

Figure 6: Co-designing fault tolerance and crash consistency.
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Figure 7: Overview of the Pavise framework. Pavise components

are marked in blue.

this characteristic naturally aligns with the working principles of

redo-logging, which directs PM updates to the logs and commits

them together at the end of a transaction (or a failure-recoverable

PM update procedure).

For workloads that are already transaction-based, the original

transaction boundaries can be kept and no changes are needed. For

low-level workloads that do not use transactions, we allow the user

to place commit functions where they want (e.g., at the end of a

function that completes an insertion operation) and conveniently

“transactionalize” the workload. Based on this observation, we co-

design fault tolerance and the crash consistency semantics of the

program in the following steps: (i) redirect all PM operations to a

volatile shadow copy first (while keeping track of them), and (ii)

commit the shadow copy to the real copy periodically via redo-

logging, postponing checksum computation and verification until

the commit point. Figure 6 illustrates this procedure. The data being

written to PM by the application will be redirected to a shadow copy

(details of the redirection mechanism are in Section 5.3). During

commit, the shadow data will be copied to a persistent redo-log and

committed along with its data redundancy. The commit point can be

specified by the programmer inside the application. For transaction-

based programs, this can simply be the end of a transaction (See

Figure 4a). For programs using low-level primitives (e.g., hashmap-

atomic [26] and memcached [40, 49] in Section 6.1), a commit can

happen when a functional piece of code ends (e.g., node insert). In

both cases, the programmer is only required to add a few function

calls in their program where they would like to commit. In general,

the commit point is inserted to mark out the end of a procedure that

needs to be failure-atomic, and allow recovery to the stage either

before or after the procedure happens if a failure occurs in the middle.

The commit operation stores data and checksum atomically with

redo-logging. Any changes made before the commit will remain

in the shadow copy. Therefore, the persistent state will always be

consistent.

5 PAVISE: DESIGN AND IMPLEMENTATION

This section discusses the design and implementation of Pavise.

We first give an overview of the design and then describe each

component of Pavise and our design choices.
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Figure 8: Inserting tracking functions via compiler pass.

Algorithm 1: Pavise compiler logic.

1 begin CompilerPass(funcList, ignoreList)

2 PMInstList.appendGetAppPMLibInst

3 PMInstList.appendGetPMLibMemInst

4 PMInstList.removeignoreList

5 foreach inst ∈ PMInstList do

6 if isStorePMinst.type then

7 inst.insertBeforePaviseTrackStore

8 else if isLoadPMinst.type then

9 inst.insertBeforePaviseTrackLoad

10 else if isCallinst.type then

11 callee = inst.getCalleeName

/* Expandable list of library functions */

12 if callee ∈ funcList then

13 inst.insertBeforePaviseTrackCall

14 end

15 end

5.1 Overview

Pavise consists of two components: (i) a compiler pass and (ii) a

runtime library. Figure 7 shows an overview of the workflow. 1○ The

Pavise compiler pass compiles the source code. During compilation,

it inserts trackers before memory access instructions/functions. For

application code, only instructions from the use of PM library func-

tions are instrumented. For PM library code, all store instructions

are instrumented conservatively. If an ignore-list of volatile-access-

only functions within the PM library is provided, instructions in

those functions will not be instrumented (Section 5.2). 2○ The in-

strumented binary is executed and trackers are called during runtime.

These trackers invoke the Pavise runtime library, which keeps track

of PM accesses, i.e., address and size. 3○ The Pavise runtime library

commits the data and redundancy to the actual persistent memory

and performs verification (Section 5.3–5.5).

5.2 Compiler Instrumentation

The Pavise compiler pass is based on LLVM [39]. It inserts a tracker

function before the instruction (as shown in Figure 8). The com-

piler pass handles application code and library code separately. For

application code, the compiler precisely instruments PM-access in-

structions according to the application’s use of PM library functions.

For example, the use of libpmemobj primitive method for direct PM

read/write, D_RW(obj), reveals the access to PM; the use of libpmem

function for writeback. For library code, the compiler performs a

conservative instrumentation by default, unless an optional ignore-

list for non-PM-accessing functions is provided. In our experiments,

we obtain an ignore-list by checking the library documentation [26]

to first filter out non-PM functions, and then perform a thorough
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Figure 9: Memory layout of the program.

profiling to identify other non-PM functions. Algorithm 1 describes

the compiler procedure in detail. Note that the existing transactional

programs (PMDK-based applications in our evaluation) use undo-

logging to backup data before modification, which is unnecessary

under Pavise. Therefore, Pavise automatically disables undo log-

ging interface functions (e.g., TX_ADD) during compilation. After

compilation, the program will call the tracking function before each

instrumented instruction, and pass the modified memory address and

its size to the Pavise runtime library.

5.3 Pavise Runtime Library

The Pavise runtime library serves three purposes: (i) redirects and

tracks PM accesses, (ii) manages the tracked PM accesses, and (iii)

updates the redirected modifications and their new redundancies,

while maintaining crash consistency.

Write redirection. In order to postpone all persistent operations

to a commit point (marked by PaviseCommit()), Pavise redirects

all PM updates (including functions that access PM) to a shadow

copy. This is done by intercepting the calls to the mmap system call

in the program. Instead of having mmap return the regular PM map-

ping address to the program, the Pavise runtime performs another

anonymous mapping (by setting the MAP_ANONYMOUS flag in mmap)

which represents the shadow copy and returns the base address of the

shadow. This way, the actual PM mapping will only be accessible

by the Pavise runtime, and the PM accesses in the original program

will be redirected to the shadow.

Figure 9 shows the memory layout of the application’s virtual

address space during execution. The shadow pool and the PM pool

have a one-to-one direct correspondence for each address. Every

byte in the shadow is a fixed offset from the corresponding PM

byte. Even though the shadow region occupies the same size of

address range as the PM pool, the actual amount of DRAM allo-

cated during runtime will only be the current working set of the

program. In case there are multiple PM pools, the runtime library

also allocates the same number of shadows. In addition, Pavise re-

serves its own PM pool (later referred to as Pavise pool) to store its

metadata, the redo logs, as well as the checksums and parity. Within

the Pavise pool, the addresses in the parity block also have a direct

one-to-many correspondence with the PM pool (see Section 5.5 for

details). The entire shadow region is initially set to be read- and

write-protected. Any read or write from the program will trigger
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Figure 10: Update process for data and checksum.

segmentation faults, which are handled by Pavise’s custom signal

handler (pavise_signal_handler in the Pavise library). Once the

handler is triggered, Pavise will copy the currently-accessed page

from the PM mapping (which is backed by the actual PM pool) to

the shadow, and mark the page as read/write accessible. In essence,

this is an on-demand copy-on-read/write scheme. Subsequent reads

will read from the latest data in the shadow, while writes will stay in

the shadow without affecting the PM pool until the commit point.

Handler for tracker functions. During runtime, every time the

tracking function is called, the handler will check the address to

confirm it is a PM address and append the address and size to a list.

This way, Pavise runtime can calculate their redundancies and apply

them back to PM during commit.

Walk-through of Pavise runtime. Figure 10 shows the process in

which data is tracked and updated. 1○ When the application performs

mmap, Pavise maps the shadow and returns it to the application. 2○

Before any PM operations, the target address is tracked and recorded

by the Pavise runtime library. 3○ PM-accessing instructions in the

application will now instead be performed on the shadow. 4○ During

commit, Pavise will compute checksums, and commit the data and

checksums to the actual PM via redo-logging.

Crash consistent updates. Once the program hits a specified com-

mit point, where PaviseCommit() is called, Pavise will begin com-

mitting all the writes recorded by the tracking functions in a crash-

consistent manner. Algorithm 2 shows the pseudocode of Pavise’s

commit routine. Verification of PM data (see Section 5.4 for details)

is first performed before the commit. Commit is done via redo-

logging similar to libpmemobj [26]. The checksums are computed

and added to the redo-log, along with the data so the updates are

atomic. After all log entries are written, the log is persisted. The

log entries will then be applied to their destinations in the PM pool

followed by a persist. If a crash happens before the redo log is com-

pleted, all entries will be discarded; if a crash happens after the redo

log is completed but before all entries are applied, all entries will be

reapplied until completion. Therefore, the updates are failure-atomic

and the recovered state will always be crash consistent.

5.4 Checksum Computation and Verification

Checksum computation. Checksums are computed at the granular-

ity of fixed-size chunks. The size is configurable and we empirically

determine that 512 Byte chunk size performs the best. The checksum

is recomputed for the entire region during commit if any data within

the chunk region is recorded by the tracking function to be dirty.

Algorithm 2: Pavise commit routine.

1 begin PaviseCommit(dirtyAddresses,redoLog)

2 verifyChecksums

3 chunks = getDirtyChunksdirtyAddresses

/* Chunk-grained checksum update with logging */

4 foreach chunk ∈ chunks do

5 csum = adler32chunk

6 redoLog.append&csum

7 end

/* Fine-grained data update with logging */

8 foreach addr ∈ dirtyAddresses do

9 redoLog.appendaddr

10 updateParityaddr

11 end

12 persistredoLog

13 foreach entry ∈ redoLog do

14 entry.apply /* Copy to PM */

15 persistentry.dest

16 end

17 redoLog.discard

18 end

The checksum algorithm is Adler-32 [44] and we utilize Intel’s high-

performance ISA-L library [22]. The checksum is stored in a hash

table (for faster access) located in the Pavise pool. During commit,

checksums are first logged in the Pavise pool and then copied to the

final hash table location to guarantee crash consistency.

Checksum verification. The checksum verification mechanism de-

tects data corruption of each chunk, by recomputing the checksum of

the chunk and comparing it with the existing checksum. A checksum

mismatch indicates the data chunk was corrupted and needs to be

corrected. Before each commit point, Pavise’s runtime library will

verify and correct all the tracked data (Section 5.5).

Verification schemes. The overhead of verification depends on

the verification scheme that determines which data will be verified

and when verification happens. Pavise provides two checksum ver-

ification schemes: verify all stores (AllStores) and verify all loads

(AllLoads). In the AllStores scheme, we perform checksum verifica-

tion on the data address of all PM stores collected by the tracking

functions. In the AllLoads scheme, we perform checksum verifica-

tion on all PM loads that access PM. Thus, to support load tracking,

the AllLoads scheme extends the Pavise compiler’s scope to in-

clude loads that access PM. And, those loads will be collected by

the tracker during runtime. In comparison, AllLoads is a stronger

scheme as data to be loaded are always guaranteed to be intact. How-

ever, as loads are usually more frequent than stores, the performance

overhead of AllLoads is higher. The user can choose the scheme

according to their needs. We evaluate the performance overhead of

both schemes in Section 6.2.4.

5.5 Parity Computation and Correction

Pavise adopts RAID4-style parity, similar to prior fault-tolerance

works for PM (Pangolin [78] and Tvarak [34]). Although RAID was

designed for traditional disk storage, its principle can be applied

to other types of data storage as well. Pavise borrows the RAID4
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principle of partitioning the data into multiple blocks and a parity

block to protect against data corruption. As shown in Figure 9, the

parity block has a 1-to-N correspondence with the data in the PM

pool. Thus, each column can correctly restore if 1 out of N bits is

corrupted using parity. The entire PM pool is divided into N rows,

with a parity row stored in the Pavise pool which is the XOR of

all N rows. Consequently, each byte-width data column consists of

N bytes of data plus one byte of parity (N is a user-configurable

parameter). A larger N will result in more bits in the original data

associated with each parity bit and reduce the storage overhead.

However, there is a higher chance that more than one corrupted bit

are associated with the same parity bit (which will render the data

uncorrectable), thereby lowering the strength of protection. Parity is

computed using Intel’s ISA-L library [22] during the commit phase.

Similar to prior work, Pangolin [78], parity updates are not logged

to reduce the performance overhead. As parity will only be used

when data corruption is detected and needs to be corrected, data will

only be truly lost if corruption and a crash happened at the exact

same time on the same set of data-parity blocks—an extremely rare

event. Upon detecting a checksum mismatch, the chunk of data is

restored using its parity (if parity is valid) along with other data in

the same data-parity column. If there is no more than one corruption

per column, data can be recovered.

5.6 Scope of Protection and Fault Model

Pavise maintains checksums and parity uniformly across the DAX

pool managed by the application, as indicated by the PM pool region

in Figure 9. If the application uses a PM library (e.g., PMDK [26]) to

access PM, the library partially or fully manages the PM pool on be-

half of the application, and maintains its own metadata stored within

the PM pool. All data within the PM pool are treated uniformly by

Pavise with checksums and parity computed, including PM library

metadata if it exists. Therefore, all data used by the application and

PM library are under the scope of Pavise’s protection.

Pavise stores all data required to provide fault tolerance within

the Pavise pool, which is a separate memory region from the appli-

cation’s PM pool as shown in Figure 9. These data include Pavise

metadata and fault-tolerance data (checksums and parity) of the

application data. The former is needed for crash consistency and is

also protected by checksums. The latter allows Pavise to detect and

recover from errors within the application PM pool.

Pavise assumes errors in the PM pool manifest themselves as bit-

flips of arbitrary patterns. While the potential sources of the errors

are described in Section 3.1, for simplicity we treat the generation

of errors as a black box and only simulate bit-flips within the PM

pool as end results in our evaluations, as described in Section 6.2.2.

During runtime, the checksum validates the data, and if an error is

CPU Intel Cascade Lake, 8 cores, 16 threads, 3.0 GHz

Caches 64kB L1, 1MB L2, 10MB L3

DRAM 64GB DDR4 2666 MT/s

PM 512GB Intel Optane DC Persistent Memory

OS Ubuntu 18.04.3, Linux kernel v5.4

Env. LLVM-11, gcc-7.5, Intel Pin-3.10, PMDK-1.10

Table 1: System configuration.

Application Configuration

hashmap-tx (hm-tx), ctree, btree,

rbtree, rtree, hashmap-atomic

(hm-atomic)

1M insert requests, 256B value size

Redis, Memcached-Lenovo,

Memcached-WHISPER
100k set requests, 256B value size

Vacation 100k relations, 200k tasks

Table 2: Applications and their configurations.

detected through a checksum mismatch, the parity will repair the

corrupted data. Corruption can also occur within the Pavise pool.

If only one of the three pieces of information: application data,

checksum, and parity, contains errors, Pavise can still recover to

a correct state based on the other two. If two or more of them are

corrupted, then Pavise cannot recover. However, the latter case has a

much lower probability of happening. We only observe uncorrectable

errors at high error rates in our experiments (see Section 6.2.2).

6 EVALUATION

In this section we first describe our methodology and then present

the results of our evaluations.

6.1 Methodology

System Configuration. Table 1 shows the system setup for our

evaluation. The Optane DC Persistent Memory Modules are set to

the AppDirect mode, and exposed as a DAX device through the

ext4-DAX file system [45] The application access PM through the

mmap system call.

Applications. We perform experiments using several benchmarks

and real-life PM applications, as listed in Table 2. Our workloads

include PMDK benchmarks [26], Redis [60], memcached [13], and

vacation [47]. PMDK benchmarks are simple key-value store struc-

tures; Redis is an in-memory database and we use a version adapted

for PM [28]; vacation is a travel reservation system from the STAMP
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suite [47]; memcached includes two versions, one is developed

by Lenovo [40] and the other is from the WHISPER benchmark

suite [49]. Note, for PMDK transactional applications, Pangolin’s

versions are heavily modified and optimized for their interface. In

comparison, Pavise is directly applied to the original code.

Baseline and Pavise configurations. We take Pangolin, a state-of-

the-art fault-tolerance software library for PM workloads, as the base-

line. As Pangolin is not compatible with generic PM applications,

we only evaluate the compatible ones based on libpmemobj [25].

For Pavise we evaluate three configurations:

• Pavise-naive: Performs fault tolerance operations after every store

instruction, as illustrated in Figure 4b.

• Pavise-conservative: Performs fault tolerance operations only at

commit points (co-design of fault tolerance and crash consistency).

Instrument all memory instructions within PM libraries.

• Pavise-ignore-list: Performs fault tolerance operations only at

commit points. Instrument a subset of PM-related memory func-

tions within the PM library (detail in Section 5.2).

Metrics and Parameters. We collect the execution time for all

workloads and configurations and compare Pavise against the base-

lines. We evaluate each setting 20 times and calculate the relative

variance σ
2/µ and relative standard error. We evaluate Pangolin

with its default mode where checksums and parity features are en-

abled. For Pavise, we set the checksum chunk sizes to 512 bytes

and the data-parity ratio (N) to 100 (the same parity strength as Pan-

golin [78]). We also evaluate a configuration with N=20 for higher

fault-tolerance strength in Section 6.2.2.

6.2 Evaluation Results

6.2.1 Performance. Figure 11 shows the normalized execution time

of the original applications, Pangolin, and Pavise across all work-

loads (lower is better). The verification scheme of Pavise is to verify

upon stores (AllStores)—the same scheme that Pangolin uses. On

average, Pavise brings fault tolerance to the PMDK benchmarks at

an overhead of having 2.16× run time with our ignore-list and 2.54×

with the conservative tracking (the maximum relative standard error

is 0.89%). In addition, the naive approach of committing after every

store instruction results in a prohibitively high overhead of 4.94×

run time when compared against the original PMDK application.

On the other hand, Pavise (with an ignore-list) is on average 2.28×

faster, as it delays fault tolerance operations until PM commit points.

We conclude that our proposed co-design of fault tolerance and crash

consistency significantly reduces the fault tolerance overhead.

While Pangolin on average performs at 1.80 × run time across the

workloads it supports, the process of applying Pavise to the work-

loads is much easier and near-automatic. In comparison, adapting a

workload to run on Pangolin requires heavy modifications. We also

notice that Pavise performs worse on btree, rbtree, and especially

rtree. This is likely attributed to the size and space pattern of the

data structures leading to inefficient checksum updates. The problem

is less severe in other real-life workloads as they are less PM-data

intensive than the PMDK benchmarks. In summary, although Pavise

is automatically applied to the original PMDK applications, it can

achieve 83.2% performance with ignore-list and 70.9% with conser-

vative tracking compared to the heavily optimized Pangolin version.
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Figure 12: Recovery success rate of Pavise and Pangolin across

PMDK benchmarks with different error injection rates, data-

parity ratio (N), and error sizes.

6.2.2 Fault tolerance test. To mimic error patterns discussed in

Section 3.1, we inject errors at various sizes, ranging from 1 bit to 64

bits. To simulate PM storage media errors, we randomly flip single

bits within the PM pool. To simulate processor hardware errors,

we inject errors at various word sizes, including 8 bits, 16 bits, 32

bits, and 64 bits. We inject errors to the PM pool to evaluate the

error-correction capability of Pavise and our baseline, Pangolin [78].

We take error rates, varying from 10−9 to 10−4 [48, 59, 75]. Such

uniform-probability error models are suggested by prior studies on

errors in persistent devices [3, 59, 62, 73, 80]. While our default data-

parity ratio is 100:1, we evaluate Pavise and Pangolin at extreme

data-parity ratios ranging from 1:1 to 10000:1. More ratios are also

evaluated and discussed in section 6.2.3. For each error injection rate

in each workload, we perform 100 trials and report the number of

trials in which error correction and recovery are successful, in order

to evaluate the fault-tolerance capability of both Pavise and Pangolin.

Figure 12 shows the recovery success rate at different error rates,

data-parity ratios (N), and error sizes. At every setting, Pavise has

an equal or a higher chance of successful recovery than Pangolin.

At lower error rates (10−9 and 10−8) both Pavise and Pangolin can

successfully recover in all trials. At higher error rates (10−7 to 10−4),

Pavise performs better than Pangolin and has a higher chance of

successful recovery in all cases.

After analyzing the implementation of Pangolin, we found that

Pangolin does not have the same protection strength for different PM

data. PM objects, e.g., a tree node structure, are protected strictly

with parity and checksums, whereas Pangolin metadata and logs are

only replicated. As a result, if errors occur simultaneously in the

main copy and the replica, respectively, both versions end up being

corrupted but there is no way to locate the error. In contrast, Pavise

provides uniform protection across all PM data in the granularity of

fixed-sized chunks. Therefore, Pavise will only fail to recover if two

errors fall in the same parity column, which is less likely than two

errors falling into the same main-replica pair in Pangolin given the

large size (3MB) of Pangolin’s logs.

6.2.3 Performance vs. recoverability. To study the tradeoff between

Pavise’s performance and recoverability, we evaluate the two metrics

across different data-parity ratios (N). The lower the ratio, the higher

the recovery success rate and vice versa. This is due to having more

parity bits per data bit, thereby having higher data redundancy. Since

having 100% recoverability is unattainable due to the worst case

that all data and redundancy become corrupted, we used the lowest

N possible (N = 1) as the upper bound of recoverability for this
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Figure 13: Run time of Pavise-ignore-list under various data-

parity ratios (N). The run times are normalized against N=100,

which is the default setting of Pavise.

6.35

0

1

2

3

4

5

h
m

-t
x

ct
re

e

b
tr

ee

rb
tr

ee

rt
re

e

h
m

-

a
to

m
ic

R
ed

is

m
em

-

ca
ch

ed
-L

m
em

-

ca
ch

ed
-W

v
a
c
a
ti

o
n

G
eo

M
e
a
n

N
o
rm

a
li

ze
d

 r
u

n
ti

m
e

AllStores AllLoads

Figure 14: Execution time of different verification schemes of

Pavise on PMDK benchmarks.

study. Similarly, 0% recoverability is simply the baseline setting

without having Pavise. We use a large value of N (N = 10000) to

approximate the lower bound of recoverability. Figure 13 shows the

normalized run times of Pavise under various data-parity ratios (the

maximum relative standard error is 1.07%). At a low data-parity

ratio (e.g., 1:1), Pavise has higher overhead due to more time spent

on computing and storing parity.

We also observe that the run times remain largely constant for

data-parity ratios less than 100. While setting a lower ratio will

provide better recoverability without compromising performance,

the storage overhead to store the parity bits become proportionally

larger (i.e., N = 1 uses 100× more space than N = 100). Since the

recoverability under N = 100 is not much lower than that under

N = 1, we choose N = 100 as our default ratio for a good tradeoff

between performance, recoverability, and storage overhead.

6.2.4 Verification schemes. Pavise has two verification schemes:

verify all stores (AllStores) and verify all loads (AllLoads). The

default scheme is AllStores, which verifies all data that that were

modified before committing the changes. This is the same default

scheme utilized by Pangolin. Figure 14 shows the performance (with

ignore-list enabled) of both verification schemes (the maximum rela-

tive standard error is 0.49%). The execution times are normalized to

the no-fault-tolerance baseline. The overheads in different verifica-

tion schemes vary. A stricter verification scheme such as AllLoads

(as there are typically more loads than stores) will have a higher

overhead, but at the same time will provide a higher level of protec-

tion because more data is verified. AllLoads will also have a higher

overhead from tracking functions that handle both loads and stores.

6.2.5 Overhead breakdown. Figure 15 shows the overhead break-

down from different operations within Pavise. The configuration is

Pavise-ignore-list and the verification scheme used is AllStores. For

AllLoads, the breakdown will be the same except for a higher over-

head from verification. For verification, the overhead includes iterat-

ing through a list of data chunks, computing the newest checksums,
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and comparing against old checksums. For parity and checksum,

the overhead mainly comes from Intel’s ISA-L library computes the

checksum/parity of the data. The overhead from logging includes

creating and flushing the logs and applying the log to the final PM

locations during commit. The remaining run time may include non-

PM operations from the original workload, tracking operations, and

Pavise internal bookkeeping operations.

The breakdown shows that logging is the main source of overhead.

Log-flush is the extra overhead Pavise introduces by writing the data

twice, once from the shadow pool to the redo log and once from the

redo log to the PM pool. While the computations of checksum and

parity have less overhead than logging, they still take a considerable

fraction of the total run time. The majority of overhead from verifica-

tion is also from checksum computations. For real-world workloads

such as Redis and Memcached, a large portion of the run time is

attributed to other non-PM operations (e.g., network stack).

6.2.6 Sensitivity study of checksum chunk size. We perform a sen-

sitivity study on how the performance of Pavise varies when the

checksum is computed based on variable-sized chunks of data on

all workloads. When the chunk size setting is large, a small-sized

update will trigger a checksum computation over the entire large

chunk. This computation may be excessive and lead to higher over-

head. On the other hand, a small chunk size will result in multiple

checksums being updated if the update size is large and covers multi-

ple chunks. Having a smaller chunk size also means the total number

of checksums will be higher and will result in more space overhead

to store the checksums. We empirically determine the optimal chunk

size setting by testing out the performance of the workloads using

different chunk size settings. Figure 16 shows how the average per-

formance varies with different chunk sizes. The execution times are

normalized to the ones when best-performing chunk size. Based on

the results, in both cases where the chunk size is too small or too

large, the performance becomes worse as predicted. On average,

a chunk size of 512 bytes provides the best overall performance.
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Figure 17: PM space overhead (% of total PM pool size) used by

Pavise in all workloads.

Therefore, we have used that chunk size setting in all of our other

evaluations.

6.2.7 PM Storage Overhead. Figure 17 shows the PM storage over-

head of Pavise across all applications. The size of the metadata used

by Pavise is negligible compared to the program’s PM pool size and

is omitted in our calculations. The main storage overhead comes

from checksums and parities, where the parity storage is always

inverse-proportional to the number of data-parity rows (N). We cal-

culate the checksum space overhead by counting the number of

checksums computed runtime and multiplying it with the checksum

size. The space overhead of parity is always inversely proportional

to the number of data-parity rows (N). As we set N to be 100 in

our implementation, the parity space overhead is close to 1% of

the PM pool size—consistent with our empirical study. Note that

memcached-L has higher space overhead due to its smaller pool size,

leading to a larger proportion of checksum storage.

7 RELATED WORK

Crash consistency in PM programs. Software PM libraries pro-

vide convenient programming interfaces for users to manage PM

under DAX mode. The majority of these libraries utilize either undo

logging or redo logging techniques to provide crash consistency. For

example, Mnemosyne [69], NV-Heaps [7], and PMDK [26] use vari-

ations or combinations of redo and undo logging to provide crash-

consistent transactions. MOD [17] uses functional shadowing to

provide crash-consistent data structures. Atlas [4], NVThreads [19],

and PMThreads [70] provide crash consistency by inferring failure-

atomic regions from the semantics of multithreaded programs. While

these libraries provide convenient interfaces for users to program a

PM application and provide crash consistency, they do not provide

fault tolerance, and thus are not resilient to data corruptions. Pavise

can be directly applied on top of applications that use these libraries

to provide fault tolerance, with minimal manual effort required.

Memory fault tolerance. Memory errors may occur for different

reasons, such as defective cells and electromagnetic interference.

There have been decades of studies on mitigating memory errors in

both DRAM and PM systems, using techniques such as ECC [48,

76], Chipkill [9, 77], and wear-leveling [56]. These techniques can

effectively mitigate errors stemming from the memory itself but

do not protect errors in the higher-level system stack, such as CPU

defects, software bugs, and firmware bugs. Therefore, a fault-tolerant

software system like Pavise is necessary to protect PM programs

against different sources of errors in the system stack.

Conventional fault-tolerant storage systems. Fault tolerance for

storage systems is a well-studied area [14, 31, 46, 50, 63]. Data

stored on traditional disk or flash devices (including PM, when it

is accessed as a block device) can enjoy fault tolerance from the

system [53, 57, 72, 79]. File systems specifically optimized for PM

such as NOVA-Fortis [72] can provide fault tolerance to files backed

by PM but cannot deal with accesses in DAX mode because accesses

in DAX mode bypass these protections. Therefore, there is the need

for a framework like Pavise that can react to DAX mode updates.

System-level protections and Pavise are complementary.

PM fault tolerance. Prior work that aims to provide fault tolerance

to DAX-mode PM applications considered both software [26, 35,

78] and hardware [34] approaches. While hardware solutions, e.g.,

Tvarak [34], provide attractive performance benefits, they require

hardware modifications—not directly applicable to existing systems.

Therefore, we keep such approaches out of the scope of this work.

All that said, the key idea of co-designing crash-consistency and

fault tolerance mechanisms from our work are also applicable to

hardware solutions. Software solutions, such as Pangolin [78] and

Vilamb [35], provide fault tolerance to PM applications by storing

checksums and parity of data in PM. However, they either require

significant manual efforts or do not provide strict protections and

consistency guarantees. Hardware solutions such as Tvarak [34] also

provide limited protection, as it only prevents errors visible at the

hardware level (e.g., last-level cache). As discussed in Section 3.1,

errors may also come from the software layer and CPU, which cannot

be identified by the hardware at the cache, requiring higher-level

software solutions to protect against. Pavise addresses the issues

above by automating tracking with a compiler pass and coupling fault

tolerance with crash consistency. Pavise can transparently provide

fault tolerance to existing systems in a directly applicable manner.

8 CONCLUSION

In this work, we present Pavise, a framework that transparently

provides fault tolerance for PM applications. Pavise does not impose

restrictions on programming models and can be readily applied

to existing workloads in real systems. Our evaluations show that

Pavise can provide strong fault tolerance at a reasonable cost with

minimal manual effort. Our evaluation shows that Pavise achieves

83.2% (with ignore-list) and 70.9% (with conservative tracking)

performance of the state-of-the-art fault-tolerance software system,

Pangolin. Because of a better coverage of persistent data, Pavise can

sustain a higher error rate of 10−5 over Pangolin’s 10−7.
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A ARTIFACT APPENDIX

A.1 Abstract

Pavies is implemented using LLVM 11.0.0, PMDK 1.10, and Intel

ISA v2.29. The artifact includes the Pavise library, PMDK modified

to work with Pavise, and various Pavise-enabled real-life workloads.

The artifact also includes the scripts to reproduce the major runtime

results in Figure 11.

A.2 Artifact check-list (meta-information)

• Program: Pavise

• Compilation: clang/clang++

• Metrics: Normalized runtimes using Pavise ignorelist, Pavise con-

servative tracking, and without Pavise.

• Output: CSV file containing the above runtime results.

• Experiment: Average runtimes normalized to original PMDK (Orig-

inal Application), as shown in Figure 11.

• Disk space required: 75GiB

• Recommended system memory: 32 GiB+

• Recommended CPU count: 8+

• Time needed to prepare workflow: 0.5 hours

• Time needed to complete experiments: 1 hour

• Publicly available: Yes

A.3 Description

A.3.1 How to access. We maintain a GitHub repository for the

artifact at https://github.com/hjjq/pavise-pact22-artifact.

Software dependencies. This artifact depends on the following
environment.

• Ubuntu 18.04

• Linux kernel 5.4.0

• LLVM 11.0.0

• gcc-7.5

• Intel Pin-3.10

• PMDK 1.10

• Intel ISA v2.29

Data sets. We evaluated the following workloads.

• PMDK examples: hashmap-tx, ctree, btree, rbtree, rtree, and hashmap-

atomic

• Real-life workloads: memcached-L, memcached-W, redis, vacation

A.4 Installation

This artifact has the following structure:

• apps-no_pavise/: Real-life application source files without Pavise.

https://www.snia.org/educational-library/persistent-memory-cxl-2021
https://www.snia.org/educational-library/persistent-memory-cxl-2021
https://redis.io/
https://www.snia.org/tech_activities/standards/curr_standards/npm
https://www.snia.org/tech_activities/standards/curr_standards/npm
https://github.com/hjjq/pavise-pact22-artifact
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• apps/: Real-life application source files with Pavise.

• build/: Generated Pavise object files and libraries.

• include/: Pavise header files.

• isa-l/: Intel ISA source files.

• llvm/: Contains ignore lists used by Pavise.

• pmdk-1.10-no_pavise/: Original PMDK with no Pavise.

• pmdk-1.10/: Pavise-enabled PMDK.

• results/: Generated Figure 11 results.

• src/: Pavise source files.

• repro.sh: Reproduces major Figure 11 results.

• setup.sh: Environment setups.

A.5 Experiment Workflow

Pavise artifact comes with a single script, repro.sh, to reproduce

the major results. Note that repro.sh will automatically execute

setup.sh to initialize the workflow environment. Since reproduc-

ing the results may take a considerable amount of time, it is rec-

ommended to execute repro.sh in a terminal multiplexer such as

screen or tmux.

source repro.sh

A.5.1 Viewing Results. After repro.sh completes, the generated

results are placed in results/. results/summary.csv summa-

rizes the results of all experiments. Note that in Figure 11, all

bars are plotted as relative runtime to the Original Appplication.

results/summary.csv records raw runtime/throughput instead. For

redis, memcached-L, and memcached-W), which measure through-

puts, the relative runtime is computed using the inverse of the mea-

sured throughput.

E.g. relative runtime of Pavise-ignore-list redis =

(Original Appplication throughput) /

(Pavise-ignore-list throughput).

To view the results of each individual experiment, please see the

rest of the files in results/:

• microbench_ignorelist.csv:

Results corresponding to Pavise-ignore-list bars for hm-tx, ctree,

btree, rbtree, rtree, and hm-atomic in Figure 11.

• microbench_conservative.csv:

Results corresponding to Pavise-conservative bars for hm-tx, ctree,

btree, rbtree, rtree, and hm-atomic.

• microbench_no_pavise.csv:

Original Application bars for hm-tx, ctree, btree, rbtree, rtree, and

hm-atomic.

• {memcached-L|memcached-W|redis|vacation}_ignorelist:

Pavise-ignore-list bars for {memcached-L | memcached-W | redis |

vacation}.

• {memcached-L|memcached-W|redis|vacation}_conservative:

Pavise-conservative bars for {memcached-L | memcached-W | redis |

vacation}

• {memcached-L|memcached-W|redis|vacation}_no_pavise:

Original Application bars for {memcached-L | memcached-W | redis

| vacation}
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