
Compiler-Assisted Crash Consistency for PMEM
Yun Joon Soh

University of California San Diego
San Diego, USA
yjsoh@ucsd.edu

Sihang Liu
University of Waterloo

Waterloo, Canada
sihangliu@uwaterloo.ca

Steven Swanson
University of California San Diego

San Diego, USA
sjswanson@ucsd.edu

Jishen Zhao
University of California San Diego

San Diego, USA
jzhao@ucsd.edu

Abstract
Writing crash-consistent programs for memory-semantic
storage such as persistent memory (PMEM) is error-prone
and cumbersome. Programmers must implement both the
main logic and the recovery logic to ensure data consistency
after unexpected power failures. Prior work has reduced
this burden using compiler-assisted logging techniques to
enforce crash consistency. However, these techniques often
apply persistence uniformly, limiting support for diverse
programming models and incurring high logging overhead.

We present SSAPP (Statically and Systematically Au-
tomated Persistence is Possible), a compiler extension
that transparently adds crash consistency to the main logic
and automatically generates tailored recovery code. SSAPP
persists transient state with low overhead during main logic
execution and makes principled resumption decisions during
post-failure recovery. Based on these decisions, the generated
recovery code correctly completes the interrupted operation.
This design supports a broader range of programming mod-
els — including lock-free data structures — while reducing
crash consistency overhead.
We evaluate SSAPP on transactional benchmarks, lock-

based, and lock-free data structures. With minimal developer
effort, SSAPP converts volatile lock-free data structures into
crash-consistent ones, achieving performance comparable
to Mirror, a hand-optimized persistent data structure library.
SSAPP also outperforms Clobber-NVM, a prior compiler-
based PMEM system, achieving 1.8× higher throughput.

CCS Concepts: • Software and its engineering→ Soft-
ware fault tolerance; Automatic programming; Runtime
environments; Consistency.

Keywords: PersistentMemory, Crash Consistency, Compiler-
based Transformation, Automatic Recovery

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ISMM ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1610-2/25/06
https://doi.org/10.1145/3735950.3735955

ACM Reference Format:
Yun Joon Soh, Sihang Liu, Steven Swanson, and Jishen Zhao. 2025.
Compiler-Assisted Crash Consistency for PMEM. In Proceedings
of the 2025 ACM SIGPLAN International Symposium on Memory
Management (ISMM ’25), June 17, 2025, Seoul, Republic of Korea.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3735950.
3735955

1 Introduction
Persistent memory (PMEM) technologies promise to bridge
the gap between memory and storage by offering high ca-
pacity, non-volatility, DRAM-like performance with byte
addressability. Despite the benefits, programming for PMEM
introduces unique challenges that differ from traditional
memory or block-based storage. In particular, ensuring crash
consistency — allowing a program to recover to a consistent
state after an unexpected power failure — requires careful
reasoning about hardware memory models, cache behavior,
and recovery mechanisms.

We assume the following programming and failure model:
CPU caches are non-volatile, meaning that data in caches is
preserved across power failures. This assumption simplifies
the persistence model: explicit cache-line flushes are unnec-
essary, and only memory ordering (via fence instructions)
must be enforced for correct crash consistency.
Developing crash-consistent programs even under this

simplified model remains difficult and error-prone. A key
challenge is maintaining failure-atomicity, where a group
of relevant memory updates must either all be reflected in
storage or none at all. Developers must manually reason
about update ordering and atomicity, inserting memory bar-
riers at appropriate code boundaries. Overuse of such in-
structions degrades performance, while underuse leads to
inconsistency.

Furthermore, programming complexity is exacerbated in
multi-threaded or lock-free programs, where recovery logic
becomes entangled with the main logic of the program, de-
manding rigorous planning and testing. To make matters
worse, verifying the crash consistency of a program is an
open research problem, asmanyworks continuously uncover
new types of bugs [6, 10, 11, 18, 26, 32, 35, 43].

https://orcid.org/0009-0004-5472-2006
https://orcid.org/0000-0001-9706-6177
https://orcid.org/0000-0002-5896-1037
https://orcid.org/0000-0002-8766-0946
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3735950.3735955
https://doi.org/10.1145/3735950.3735955
https://doi.org/10.1145/3735950.3735955


ISMM ’25, June 17, 2025, Seoul, Republic of Korea Yun Joon Soh, Sihang Liu, Steven Swanson, and Jishen Zhao

Prior work has explored various approaches, including
persistent memory (PMEM) programming libraries [2, 4, 15,
17, 29, 47], static code analysis for conservative flush and
fence insertion [42], hardware support for persistent cache
emulation, and compiler extensions [8, 19, 31, 50]. Each ap-
proach has limitations: libraries reduce programming com-
plexity but restrict flexibility; persistent caches still require
manual recovery code; and naively inserting flush and fence
instructions hurts runtime performance.

Recovery-Via-Resumption (RVR) [19, 31, 50], is a compiler-
based technique, which assumes that failure-atomic sections
(FASEs) are clearly delineated, either via locks or program-
mer annotations. Recovery is achieved by resuming execu-
tion from the logged program counter and executing until
completion. However, these models do not generalize to
lock-free or fine-grained programs, where atomicity is not
explicitly marked and operations often involve read-modify-
write (RMW) sequences. For example, naively re-executing
a fetch-and-add after a crash (because the program counter
indicates that it was the failure point) may result in apply-
ing the update twice. We elaborate on these limitations and
explain how RVR negatively impacts the performance of
hand-optimized programs in Section 2.3.3.
This paper presents SSAPP (Statically and Systemat-

ically Automated Persistence is Possible), a compiler
extension that generalizes RVR to support a broader range of
programs, including lock-free data structures. SSAPP stati-
cally analyzes the input code and partitions it into read-only,
write-only, or RMW code regions. Then, SSAPP systemati-
cally transforms it into a crash-consistent main logic and a
tailored recovery code. Unlike existing approaches, SSAPP
inserts more precise decision logic into automatically gener-
ated recovery code, allowing it to either re-execute or skip
the crashed region, such as an already executed RMW re-
gion. To clarify the limitation, SSAPP depends on several
assumptions as detailed in Section 3.1.2. The key program-
mer responsibility is to define each failure-atomic region as
a single function.

The pre-failure performance and recovery correctness de-
pend on low-overhead techniques that answer the following
two questions: (Q1) which code region was being executed
at the moment of a crash, and (Q2) whether the recovery
should re-execute or skip the crashed region. We propose
three techniques to answer these questions: (T1) Crash Buoy
(CB), a program progress tracker, (T2) Load-to-Persist (L2P),
a lightweight load atomicity tracking technique, and (T3)
Tornbit for Store Atomicity (TSA), a versioning bit embedded
in metadata to verify atomicity of stores and decide whether
to re-execute from or skip over the crashed region.

These mechanisms work together to answer (Q1) and (Q2)
in the following way. Similar to previous RVR techniques
that persist the program counter for each load or store in-
struction, SSAPP persists the code region ID to a dedicated
per-thread storage location called Crash Buoy (CB). The

per-thread CB enables multi-threading support, where each
threadmay be working on a different region of the same code.
Instead of logging the data to be overwritten as in an undo
log, SSAPP ensures that the loaded values are consistent
via Load-to-Persist (L2P). To ensure correct resumption
decisions, SSAPP adds a single-bit versioning mechanism
called Tornbit for Store Atomicity (TSA) to each metadata
updated by SSAPP. If the TSA values from CB and L2P match
within the crashed region, the region has been atomically
executed before the failure and could be skipped. The pro-
posed technique is CPU-cache-friendly and requires only
half the number of memory fence instructions compared to
logging, resulting in higher performance.
We evaluate SSAPP for various applications with per-

sistent cache assumption, including lock-free/lock-based
data structures and transaction benchmarks against Mir-
ror [7], Clobber-NVM [50], hand-optimized versions, and
PMDK [17]. Overall, SSAPP achieves 1.8× higher through-
put than Clobber-NVM [50], a compiler-based recovery-via-
resumption approach. The performance benefit stems from
two key factors: the proposed techniques are lightweight,
cache-friendly, and relaxed ordering requirements within
each code region. CB, L2P, and TSA involve bit operations
and store updates to per-thread, per-region, preallocated
memory. Even when the same code region executes repeat-
edly (e.g., in loops), SSAPP reuses preallocated metadata
storage. This reuse improves cache locality, as the metadata
is often already cached. Furthermore, the versioning infor-
mation is embedded in the metadata, eliminating the need
for explicit ordering between version updates and their cor-
responding data writes.

In summary, this paper makes the following contributions.

• Instead of requiring programmers to manually write,
test, and debug crash-consistent code for PMEM, SS-
APP transparently provides crash consistency, improv-
ing programmability and reducing developer burden.

• We implemented SSAPP, a compiler extension that
adds crash consistency to the input program and auto-
matically generates a matching post-failure recovery
code.

• SSAPP supports a wider range of programs, including
lock-free data structures, and exhibits comparable per-
formance with the hand-optimized persistent lock-free
library, Mirror, without burdening the programmer to
add crash consistency manually.

• SSAPP improves 1.8× throughput over Clobber-NVM.

We organize the paper as follows: We introduce program-
ming models for PMEM and summarize existing works’ lim-
itations in Section 2. Then, we address the challenges and
the critical design choices in Section 3. After elaborating on
the implementation (Section 4), we report the performance



Compiler-Assisted Crash Consistency for PMEM ISMM ’25, June 17, 2025, Seoul, Republic of Korea

benefit, scalability of SSAPP, and empirical correctness vali-
dation (Section 5). We discuss related works in Section 6 and
conclude in Section 7.

2 Background
We outline the fundamental building blocks and survey exist-
ing solutions for writing crash-consistent persistent memory
(PMEM) programs.

2.1 Crash-Consistent Programming Primitives
PMEM exposes memory directly to a process’s virtual ad-
dress space via DAX-mmap(). This bypasses the traditional
kernel I/O stacks, enabling programs to perform fine-grained
updates that leverage PMEM’s low latency and non-volatility.
Once mapped, a program performs updates using standard
load and store instructions. However, since modern archi-
tectures may reorder these instructions for performance, a
crash can leave memory in an inconsistent and unrecover-
able state.

To address this, programmers insert cache-line flush and
memory barrier instructions to align persistence order with
program execution order. The former flushes dirty cache
lines to backing storage, while the latter stalls program ex-
ecution until preceding memory instructions retire. While
these primitives are foundational for crash consistency, they
are easily misused. Redundant flushes to the same cache line
degrade performance, and excessive fence instructions add
unnecessary latency. Conversely, missing a flush or fence
may violate memory ordering guarantees, resulting in incon-
sistencies after a crash.

2.2 Persistent CPU Cache
Prior work [19] assumes the presence of non-volatile CPU
caches, backed by capacitors, allowing dirty cache lines to
be flushed to PMEM upon power failure. Despite the discon-
tinuation of Intel Optane PMEM, several emerging platforms
such as extended Asynchronous DRAM Refresh (eADR) ex-
ist along with systems such as memory-semantic SSD and
CXL shared memory continue to offer partial failure re-
silience [51, 56].
However, eADR is not a silver bullet for crash con-

sistency. It does not eliminate crash consistency challenges
due to (1) the use of non-temporal store instructions and (2)
the lack of a universal definition of a consistent state. Even
with eADR, programmers must carefully insert fence in-
structions when using non-temporal stores (weakly-ordered,
cache-bypassing store instructions), considering the associ-
ated performance overhead. Furthermore, eADR guarantees
persistence only up to a point; applications still need their
own definitions of consistency. For instance, lock-free data
structures require crash consistency logic, as an interrupted
operation such as rebalancing a tree can leave memory in a
logically inconsistent state.

2.3 Programming Models and Tools
To ease crash consistency, industry and academia have intro-
duced various programming models such as crash-consistent
transactions, Failure-Atomic SEctions (FASE), and recovery-
via-resumption (RVR).

2.3.1 Crash-Consistent Transactions. Crash-consistent
transactions typically encapsulate a sequence of operations
within start/endmarkers (e.g., API calls), ensuring all updates
in-between become visible or none do. A widely adopted
technique for crash-consistent transactionalmemory iswrite-
ahead logging, which persists auxiliary recovery data called
logs. It ensures atomicity by persisting either the original ver-
sion (undo-log) or the updated version (redo-log) of each data
object. Recovery involves rolling back partial transactions
or reapplying the committed ones. From an execution stand-
point, logging requires memory fences to guarantee that log
entries are persisted before in-place updates occur, ensuring
correctness. This incurs high overhead, and many previous
works attempt to reduce it through various solutions, includ-
ing hardware-based solutions [22, 36, 44, 48, 57], software
approaches [8, 37–39] and specialized data structures where
relative offsets encode sufficient recovery information [41].

2.3.2 Failure-Atomic Section (FASE). FASEs are code re-
gions identified by the outermost locks [2]. Chakrabarti et al.
observed that a data-race-free program with lock-based con-
currency controls naturally creates code regions where up-
dates are expected to be failure-atomic. Within each region,
all updates should persist together or not at all. Subsequent
work extended this model using relaxed memory barriers [5],
or compiler-based recovery mechanisms [19, 31, 50].

2.3.3 Recovery-Via-Resumption. Even with persistent
caches, traditional logging incurs overhead proportional to
the modified data [19]. The authors proposed an alterna-
tive approach to traditional undo/redo logging: a minimalis-
tic logging before each store instruction, consisting of the
program counter, store address, and value. Upon recovery,
JUSTDO loads the latest program counter and resumes the
execution until completion (thus referred to as recovery-via-
resumption). This method outperforms traditional logging,
despite the increased logging frequency. Although their solu-
tion inspired various follow-up works focusing on transient
CPU cache [21, 31, 50, 53], they were limited by restrictive
assumptions such as prohibiting transient state (e.g., data on
DRAM, variable promoted to register).

Follow-up works, such as iDO [31] and Clobber-NVM [50],
addressed the limitation of JUSTDO and reduced the crash
consistency overhead. iDO identified that a set of stores
(those within an idempotent region) can be re-executed with-
out side effects and, therefore, does not require prior logging.
Clobber-NVM further reduced the logging size by identifying
clobber writes — writes that overwrite inputs — and logging
them just before execution. However, these works relied on



ISMM ’25, June 17, 2025, Seoul, Republic of Korea Yun Joon Soh, Sihang Liu, Steven Swanson, and Jishen Zhao

Figure 1. Key Design Components. The SSAPP pipeline begins by converting input control flow into a collection of
read/write/RMW RISE units (Section 3.2). Tornbit for Store Atomicity (TSA) is applied by embedding version bits into memory
writes (Section 3.4.1). Load-to-Persist (L2P) ensures read values are persisted with torn-bits (Section 3.4.2). Each RISE stores
execution progress in a per-thread Crash Buoy (CB) to approximate failure points (Section 3.4.3). Based on the memory state,
the recovery logic determines the correct resumable RISE (Section 3.5).

a FASE-based programming model, and applying them to a
non-FASE model could lead to suboptimal performance or
consistency issues.

2.4 Motivation
An overlooked strength of RVR is its potential to serve as
a foundation for transparently providing crash consistency
and reducing the burden of writing recovery code. Further-
more, RVR always completes an initiated FASE, allowing the
programmer to regard it as committed as soon as its initiation
phase is complete [50]. From this observation, we propose a
systematic, compiler-assisted approach that automates the
recovery generation for a broader range of programming
models with better performance.
We propose SSAPP, a systematic approach that general-

izes RVR beyond FASEs. SSAPP rewrites pre-failure code into
a series of failure-Reentrant and Idempotent SEction (RISE)
and instruments them with progress-tracking and atomicity-
checking logic. On recovery, SSAPP decides whether to skip
or re-execute the crashed RISE based on the tracked state.
SSAPP requires minimal programmer input (function-

level atomicity boundaries) and supports various program-
ming models, including lock-free code. The key enabler is
that SSAPP generates a tailored recovery algorithm that
uses persisted metadata to make resumption decisions based
on the atomicity of prior memory updates. With a delicate
resumption decision, SSAPP transparently adds crash consis-
tency to various programming models, including lock-free
data structures.

3 Design
Writing crash-consistent programs for persistent memory
(PMEM) is error-prone and cumbersome because developers
must explicitly manage both the main logic and the recov-
ery logic. To address these challenges, we propose SSAPP,

claiming that Statically and Systematically Automated
Persistence is Possible. SSAPP is a novel compiler exten-
sion that transparently ensures crash consistency with three
key components: (1) TSA, a lightweight, atomicity-checking
mechanism embedded directly into memory operations; (2)
L2P, an efficient persistence mechanism that eliminates the
overhead of expensive logging; and (3) Crash Buoy, a low-
overhead approximate progress tracker enabling correct re-
sumption without enforcing expensive memory ordering
constraints. Table 1 defines key terms and their respective
roles within SSAPP.

Unlike prior works [31, 50], which required memory barri-
ers between logging and data updates, SSAPP embeds single-
bit versioning information directly into log entries, eliminat-
ing the need for an additional barrier. Using this embedded
version information, SSAPP intelligently determineswhether
a set of memory accesses was atomically executed before a
sudden failure, avoiding naive resumption from previously
recorded program progress. This approach yields two key
benefits: (1) broader support for diverse programming mod-
els beyond naive Recovery-Via-Resumption (RVR), and (2)
reduced overhead by eliminating memory barrier with a
lightweight, cache-friendly alternative techniques.

3.1 Challenge and Assumptions
Designing a universal solution for automatic recovery gen-
eration imposes several technical challenges. Although we
target a generic solution suitable for a wide range of program-
ming models, not all programs are appropriate candidates
for SSAPP. Here, we articulate these technical challenges
and clearly outline the programmer’s responsibilities.

3.1.1 Design Challenges. The core challenge is ensuring
that each basic block (BB) can be safely re-executed without



Compiler-Assisted Crash Consistency for PMEM ISMM ’25, June 17, 2025, Seoul, Republic of Korea

Table 1. Key Terminologies.

Term Definition Purpose

RISE Reentrant & Idempotent Code Section Ensure safe re-execution
CBID Crash Buoy ID (coarse-grain PC) Approximate tracking of crash location
TSA Torn-bit for Store Atomicity Determine if RISE execution is atomic
L2P Load-to-persist Persist transient state efficiently
WAR Write-After-Read Critical anti-idempotency pattern

Basic Block (BB) A straight-line sequence of instructions with a single entry and a single exit Basic unit of compiler pass operation
Atomicity Ensures that an instruction sequence executes either completely or not at all Maintains data consistency

side effects and that subsequent BBs do not introduce un-
intended behavior. This requires several tasks: (1) ensuring
idempotency of each BB, (2) persisting the transient state
efficiently for failure reentrancy, (3) embedding minimal in-
formation to verify whether a RISE executed atomically prior
to a failure and (4) ensuring a correct resumption for crash
consistency.
A resumption decision is correct if the transient data re-

quired for resumption is available in a consistent state, and
resumption does not result in an incorrect re-execution. For
example, consider a simple increment operation, i++. The
initial value of i must be available after a crash, and the
recovery thread must ensure it executes only once, either by
the pre-failure thread or the recovery thread.

Unlike prior works, which relied on alias analysis to find
idempotent code regions, we observe that loading an already
updated value is a primary source of incorrect resumption.
Therefore, SSAPP separates sequences of load instructions
from other instructions by inserting unconditional branch
instructions. For example, the i++, which is a sequence of
load-add-store, becomes load-branch-add-store. This greedy
strategy allows SSAPP to avoid conservative alias analysis,
which typically results in unnecessary logging overhead.

When persisting transient data (e.g., stack variable, cur-
rent RISE ID), naive logging or checkpointing techniques
incur significant performance overhead because data must
be persisted prior to updates. Instead, SSAPP leverages the
fact that all virtual registers (variables in LLVM) must be
defined before their use due to the Single Static Assignment
(SSA) requirement. LLVM uses alloca instruction to allocate
space on the stack when defining a virtual register. SSAPP
replaces these with function calls to the PMEM allocator so
that the subsequent memory accesses target PMEM. Given
that Extended Asynchronous DRAM Refresh (eADR) guar-
antees persistence for cached data, SSAPP avoids explicitly
flushing caches, thus significantly reducing transient data
persistence overhead.

To verify whether a RISE executed atomically, SSAPP em-
beds minimal information into each memory access instruc-
tion. The key idea is to embed a single torn-bit within each
atomically accessed data location in a RISE. The torn-bit’s
value is tracked per RISE and flipped at the beginning of

each RISE. If all memory access instructions within a RISE
share the same torn-bit value, the RISE is considered to have
executed atomically. This mechanism is referred to as the
Torn-bit for Store Atomicity (TSA). For load instructions, we
propose a mechanism called Load-to-Persist (L2P) technique,
which immediately stores the loaded value into designated
persistent storage, embedding the torn-bit accordingly. As
elaborated in Section 3.5, atomicity checking for store in-
structions does not impact the correct recovery and thus is
omitted for write-RISEs.
SSAPP utilizes a straightforward resumption algorithm,

leveraging the type (read/write/RMW) and TSA status of the
crashed RISE. If the TSA indicates the RISE was completed
before failure, the recovery thread resumes execution from
the "terminator" instruction (e.g., branch). SSAPP explicitly
checks the RISE type, as re-executing a completed read-RISE
or RMW-RISE may yield incorrect recovery. We discuss the
details in Section 3.5.

3.1.2 Programmer’s Responsibility. Developers using
SSAPPmust: (1) specify the failure-atomic code region explic-
itly, (2) allocate persistent heapmemory for memory accesses
within those regions, and (3) ensure the software runs on
persistent CPU cache hardware platforms such as Extended
Asynchronous DRAMRefresh (eADR). SSAPP’s effectiveness
depends on the compiler’s ability to recognize and persist
transient states. For example, transient states available dur-
ing runtime, such as Linux socket states, cannot be automat-
ically persisted across crashes since they are not visible at
compile-time. Persisting such states would require signifi-
cant engineering effort or kernel-level redesign and remains
future work. Furthermore, SSAPP assumes eADR-supporting
hardware. Such hardware provisions enough power so the
CPU can flush the data in a volatile cache before a complete
blackout. However, assuming the input program is bug-free,
SSAPP can safely handle crashes occurring even during re-
covery, as the same crash-consistency techniques used for
pre-failure code are also present in the generated post-failure
recovery code.

3.2 Partitioning into RISE
The post-failure program in the RVR model attempts to iden-
tify where the crash occurred and resume the execution until



ISMM ’25, June 17, 2025, Seoul, Republic of Korea Yun Joon Soh, Sihang Liu, Steven Swanson, and Jishen Zhao

completion. However, tracking at every instruction incurs
high overhead [19]. As with prior works [31, 50], SSAPP par-
titions the input program into an instruction sequence and
tracks execution progress at a coarse granularity. Resuming
at coarse granularity may result in redundant re-execution
of instructions, and therefore, it is important to ensure that
re-executions do not cause unintended side effects. Previ-
ous works referred to such re-executable code sequences
as idempotent regions. SSAPP refines this concept of idem-
potency and introduces a complementary property called
failure reentrancy.

To achieve piecewise failure reentrancy and idempotency,
SSAPP splits a BB into one of the three types: read, write,
or read-modify-write (RMW). When splitting a BB, SSAPP
inserts unconditional branch instruction to preserve the orig-
inal control and data flow. Additionally, SSAPP treats cer-
tain instructions such as CallInst, RMW, and memory bar-
rier (e.g., sfence) as splitting boundaries. The rationale for
splitting immediately after these instructions is that if these
instructions are successfully executed, the whole RISE is
successfully executed.

3.2.1 Identity, Failure Reentrancy, Idempotency. First,
we define the identity of two persistent images: two PMEM
images are considered identical if the values at all corre-
sponding offsets exactly match.
Failure Reentrancy An instruction sequence is failure-

reentrant if it can resume from a partially persisted image —
created due to a sudden crash — and produce a final memory
image identical to that produced by uninterrupted execution.
Formally, given a sequence of instructions 𝑓 (𝑥) and an input
𝑥 , let’s assume that we partition 𝑓 (𝑥) into 𝑔(𝑥) and ℎ(𝑥),
such that 𝑓 (𝑥) = ℎ(𝑔(𝑥)). The sequence is failure-reentrant
if, for all valid ℎ(𝑥) and 𝑔(𝑥), the following property holds:
𝑓 (𝑔(𝑥)) = 𝑓 (𝑥).1
Idempotency An instruction sequence is idempotent if

executing it multiple times results in an identical image.
Formally, given a sequence of instructions 𝑓 (𝑥) and an input
image 𝑥 , 𝑓 (𝑥) is idempotent if 𝑓 (𝑥) = 𝑓 (𝑓 (𝑥)).

An alternative definition is an instruction sequence with-
out an anti-idempotency pattern. An anti-idempotency pat-
tern is Write-After-Read (WAR) data dependency [31]; if a
program loads from memory and stores an updated value to
the same memory location, it is not idempotent (e.g., i++).
To eliminate these anti-idempotency patterns, SSAPP lever-
ages that LLVM’s BB is an instruction sequence that can
easily be partitioned into two regions with an unconditional
branch instruction without altering the control flow. After
partitioning, each RISE is idempotent at a memory operation
level since RISE exclusively reads or writes to the memory

1Failure reentrancy can be defined for identity functions as long as the mem-
ory image is large enough to specify the intermediate status. For example,
failure-reentrant identity function for a single-bit memory is impossible
because there are not enough bits to represent an intermediate state.

but never both. For an indivisible memory operation such
as RMW, SSAPP employs explicit atomicity checks to avoid
unintended re-execution (Section 3.4.1).

3.3 Persisting Transient Data
Persisting transient state is essential for RVR. However, naive
techniques like write-ahead logging or checkpointing intro-
duce significant performance overhead by halting execution
until data persistence completes. Instead, SSAPP efficiently
persists transient data by redirecting volatile stack alloca-
tions to persistent memory. Specifically, SSAPP leverages
LLVM’s requirement that all virtual registers be explicitly
defined using the alloca instruction on the stack. It then
replaces these volatile stack allocations with persistent mem-
ory allocations, effectively redirecting transient stack data
directly to persistent storage without incurring costly stalls
or logging overhead.

3.4 Embedding Metadata for Atomicity Check
Persisting transient data alone does not guarantee that a RISE
can be correctly resumed. For instance, consider a scenario
in which a write-RISE following a read-RISE overwrites the
overlapping memory before a crash. Naively resuming from
the read-RISE could lead to loading an updated, incorrect
value, causing faulty recovery. The difficulty comes from
accurately tracking program progress, since a crash could
occur before progress-tracking information is updated, re-
sulting in stale tracking. Incorrect tracking could misinform
the recovery thread, resulting in incorrect resumption.
Instead of tracking the exact program progress, SSAPP

tolerates approximate progress tracking via per cacheline
single-bit versioning, known as the torn-bit. During recovery,
this torn-bit hints at whether a set of memory accesses were
executed atomically before a failure, termed the Torn-bit for
Store Atomicity (TSA) check. For load instructions—which
inherently do not store values—we propose a novel tech-
nique called Load-to-Persist (L2P). L2P immediately persists
each loaded value into a dedicated PMEM location, with a
properly updated torn-bit. This approach simultaneously pro-
vides atomicity verification for load instructions and ensures
the latest loaded values persist correctly. For approximate
progress tracking, we propose a Crash Buoy (CB), which
holds both the RISE ID representing approximate progress
and the corresponding ground-truth single-bit version infor-
mation. We refer to the RISE ID indicated in CB as CBID.

3.4.1 Torn-Bit for Store Atomicity (TSA). Checking the
atomicity of a crashed RISE is challenging due to a poten-
tially outdated CBID. As shown in Table 2, the CBID may
be outdated by up to one RISE interval. For example, a pre-
failure thread may complete execution of 𝑅𝐼𝑆𝐸𝑁 and entered
the subsequent 𝑅𝐼𝑆𝐸𝑁+1. If a crash occurs before the CBID
update, the recovery thread would perceive 𝑅𝐼𝑆𝐸𝑁 as the



Compiler-Assisted Crash Consistency for PMEM ISMM ’25, June 17, 2025, Seoul, Republic of Korea

Figure 2. Load-to-Persist Example. Visualization of how
SSAPP transforms a simple increment (i++) into two RISEs
with explicit data persistence. Other SSAPPmodifications are
omitted for clarity. The transformation is similar to LLVM’s
register demotion, but instead redirects values into SSAPP-
managed non-volatile memory with torn-bits applied for
atomicity tracking.

crashed RISE. To mitigate the obscurity, we introduce the
torn-bit mechanism.
A torn-bit is a special single-bit flag allocated for each

SSAPP-managedmemory-access destination. The post-failure
recovery inspects the torn-bit of every SSAPP-managed
memory location within a RISE to verify if RISE is atom-
ically executed. If all locations bound to a RISE have the
matching torn-bit as the CB’s torn-bit, it confirms that the
RISE executed atomically.
Optimization for Memcpy For dynamically allocated

shadowmemory or a largememory-copy operation (memcpy()),
adding torn-bit operations for every 8-byte cache line incurs
significant overhead. Instead, we allocate a shadow memory
for the checksum of the memory region storing a checksum
of the entire memory region along with a torn-bit. During
recovery, a runtime library function compares the stored
checksum and torn-bit against freshly computed values. A
match indicates atomic execution, thus efficiently verifying
RISE atomicity.

3.4.2 Load-to-Persist (L2P) for Load Atomicity. The
L2P technique persists any loaded value immediately into
SSAPP-managed persistent storage, embedding an appropri-
ate torn-bit. The post-failure program checks the atomicity
for a set of L2P using the Torn-bit Store Atomicity (TSA,
Section 3.4.1). If L2P operations are not atomically executed
before a failure, the post-failure program can re-execute

Table 2. Inferred Crash Point from CB and TSA.

Crash Buoy TSA Status Actual Crash
𝑅𝐼𝑆𝐸𝑁−1 𝑅𝐼𝑆𝐸𝑁 𝑅𝐼𝑆𝐸𝑁+1

𝑅𝐼𝑆𝐸𝑁 True 𝑋 𝑂 𝑂

𝑅𝐼𝑆𝐸𝑁 False 𝑋 𝑂 𝑋

(𝑂 : possible 𝑋 : impossible)

the L2P because the original load memory location remains
unchanged (no overwriting update operations due to RISE
decomposition; RMW is a special case as elaborated in Sec-
tion 3.6). With L2P, SSAPP can track whether a set of load
instructions was successfully executed before the failure by
checking the embedded version information of correspond-
ing PMEM memory.

Figure 2 (a) illustrates an example of L2P handling a simple
increment (i++). A visual representation of i++ is shown
on the right. A thread loads the value of 𝑖 into register %𝑎,
computes %𝑏 by adding 1, and stores %𝑏 back to the memory
location 𝑖 . This is a Write-After-Read (WAR) dependency be-
cause executing the store instruction overwrites the original
memory location.
Figure 2 (b) visualizes how L2P resolves the WAR depen-

dency and assists the atomicity check of a read RISE. In
𝑅𝐼𝑆𝐸𝑁 , a thread reads from memory location 𝑖 and persists
to memory location 𝑖′, hence the name Load-to-Persist. In
the subsequent RISE, 𝑅𝐼𝑆𝐸𝑁+1, the thread writes the incre-
mented value to the original destination 𝑖 . The atomicity of
read accesses in 𝑅𝐼𝑆𝐸𝑁 can be checked with TSAs, which are
set to 0 in the figure. The added instructions do not impact
the original program’s control flow, data flow, or data layout
(𝑖′ resides in SSAPP-managed non-volatile memory).

3.4.3 Tracking Program Progress with Crash Buoy.
SSAPP allocates per-thread 8-byte persistent storage for hold-
ing the RISE ID of the most recently executed RISE. Upon
entering a new RISE, SSAPP stores its ID in this dedicated
memory, referred to as the Crash Buoy. The value stored in
CB is termed the CBID. SSAPP intentionally avoids enforcing
strict persist ordering relative to other memory operations
within a RISE, allowing for low overhead. A memory barrier
placed at the end of each RISE sufficiently constrains poten-
tial reordering, ensuring consistent and correct tracking, as
detailed in Table 2.

3.5 Recovery Algorithm
The modifications discussed earlier provide sufficient infor-
mation to determine the correct resumption point after a
crash. Here, we describe how SSAPP computes the resumable
RISE, defined as the RISE from which resuming execution
leads to an identical final memory state compared to unin-
terrupted execution. This computation depends on three key
factors: the Crash Buoy (CB), the crashed RISE’s type (read,



ISMM ’25, June 17, 2025, Seoul, Republic of Korea Yun Joon Soh, Sihang Liu, Steven Swanson, and Jishen Zhao

Table 3. Correct Resumption for Possible CasesDerived
from Table 2.

RISE Type CB TSA Actual Crash Resume at
𝑁 ? 𝑁 + 1?

Read 𝑅𝐼𝑆𝐸𝑁 T 𝑅𝐼𝑆𝐸𝑁 𝑂 𝑂

Read 𝑅𝐼𝑆𝐸𝑁 T 𝑅𝐼𝑆𝐸𝑁+1 𝑋 𝑂

Read 𝑅𝐼𝑆𝐸𝑁 F 𝑅𝐼𝑆𝐸𝑁 𝑂 𝑋

Write 𝑅𝐼𝑆𝐸𝑁 T 𝑅𝐼𝑆𝐸𝑁 𝑂 𝑂

Write 𝑅𝐼𝑆𝐸𝑁 T 𝑅𝐼𝑆𝐸𝑁+1 𝑂 𝑂

Write 𝑅𝐼𝑆𝐸𝑁 F 𝑅𝐼𝑆𝐸𝑁 𝑂 𝑋

RMW 𝑅𝐼𝑆𝐸𝑁 T 𝑅𝐼𝑆𝐸𝑁 Impossible
RMW 𝑅𝐼𝑆𝐸𝑁 T 𝑅𝐼𝑆𝐸𝑁+1 𝑋 𝑂

RMW 𝑅𝐼𝑆𝐸𝑁 F 𝑅𝐼𝑆𝐸𝑁 𝑂 𝑋

(𝑂 : resumable, 𝑋 : incorrect resumption)

write, or RMW), and the Torn-bit Store Atomicity (TSA)
status.

Why Naive Resumption Fails. Even under ideal condi-
tions — where all of the RISEs are piecewise failure-reentrant
and idempotent, and CB updates in order relative to other
store instructions — naively resuming from the crashed RISE
can lead to incorrect recovery. Without loss of generality,
we assume 𝑁 for CBID and 𝑁 − 1 and 𝑁 + 1 as RISE ID
of predecessor and successor RISEs, respectively. Figure 2
shows that CB can be outdated if updating the CB to 𝑁 + 1
is reordered with 𝑅𝐼𝑆𝐸𝑁+1 execution. An outdated CBID be-
comes problematic when 𝑅𝐼𝑆𝐸𝑁 and 𝑅𝐼𝑆𝐸𝑁+1 collectively
form an anti-idempotency pattern. For example, if 𝑅𝐼𝑆𝐸𝑁
reads a transient value and 𝑅𝐼𝑆𝐸𝑁+1 increments and writes
the updated value, resuming from 𝑅𝐼𝑆𝐸𝑁 would incorrectly
increment the value twice.

Correct Resumable RISE Computation. To accurately
identify the resumable RISE, the recovery logic inspects the
CB, determines the crashed RISE’s type, and evaluates the
TSA status. As shown in Table 3, re-executing the RISE in-
dicated by CBID is incorrect when it is write-RISE and has
completed atomic checkpointing (i.e., TSA = True). Based
on this insight, SSAPP uses the following simple algorithm.

• If the crashed RISE (CBID) is of type read or RMW and
the TSA check passes (TSA = true), the recovery logic
resumes execution at the end of this RISE.

• In all other scenarios, the recovery logic resumes from
the beginning of the crashed RISE.

3.6 Correctness
We validate SSAPP’s correctness along three dimensions: (1)
maintaining the original input program’s control flow, data
flow, and data layout, (2) preserving TSA and L2P data in the
presence of power failure, and (3) resuming execution at a
correct RISE. More rigorous proof is available in Appendix A.

Figure 3. Example for Highlighted Cell in Table 3. Con-
tinuing with the i++ example, the left pane shows the sim-
plified IR-like code after SSAPP conversion. If a crash occurs
after the store instruction in 𝑅𝐼𝑆𝐸𝑁+1, the SSAPP would
interpret the PMEM state as shown under SSAPP’s Interpre-
tation. Naively resuming from 𝑅𝐼𝑆𝐸𝑁 is incorrect because
load instruction reads an already overwritten value, vio-
lating failure reentrancy. Instead, correctly resuming from
𝑅𝐼𝑆𝐸𝑁+1 avoids duplicate execution and preserves program
semantics.

Preserved Control Flow/Data Flow/Data Layout. We
preserve the control flow and data flow of the original pro-
gram by inserting non-intrusive instructions: (1) uncondi-
tional branch to split the basic block, (2) store instructions to
newly allocated destination, and (3) no modification to orig-
inal store instructions. While the data layout may change
slightly due to new allocations, these modifications do not
impact the original program logic. Such changes only pro-
vide additional hints to the SSAPP-aware post-failure thread
regarding the atomicity of loaded values.

Persistence Across Power Failure To preserve the con-
trol flow and data flow across power failures, SSAPP ensures
that volatile transient data is persisted. SSAPP assumes that
the heap is persistent and stack variables are all loaded be-
fore their use (following LLVM’s Single Static Assignment
rules). Therefore, SSAPP allocates and persists every loaded
value, effectively preserving the transient state across sudden
crashes.

Recovery Algorithm Correctness We demonstrate the
correctness of resumable RISE computation using the tables
(Table 2, Table 3) and an example illustration (Figure 3) of
an incorrect resumption for a naive approach. If the two
subsequent RISEs do not access the same memory location,
resuming execution directly from the CBID is correct. We
assume in Table 2 that 𝑅𝐼𝑆𝐸𝑁 and 𝑅𝐼𝑆𝐸𝑁+1 access a shared
memory location.
As shown in the Table 2, a fence at the end of each RISE

limits the possible states inferred from the CB and the TSA
status. At the moment of a power failure, suppose the thread



Compiler-Assisted Crash Consistency for PMEM ISMM ’25, June 17, 2025, Seoul, Republic of Korea

was executing 𝑅𝐼𝑆𝐸𝑁 . The TSA status could be either of
two states: True indicating that all of the memory accesses
within the 𝑅𝐼𝑆𝐸𝑁 were atomic, or False indicating that at
least one of them was incomplete. In either case, the actual
failure point (as opposed to the CB, which is only an approx-
imate failure point) can not be 𝑁 − 1 because overwriting
the CB with value 𝑁 must occur after all preceding stores.
Additionally, out-of-order execution across RISE is infeasible
due to the last fence instruction at each RISE’s end. If the
TSA status is False, the actual failure point can not be 𝑁 + 1
either.
Table 3 enumerates all possible combinations of RISE

types, CB values, TSA statuses, and the actual failure point,
marking the correct resumption as 𝑂 and incorrect resump-
tions as 𝑋 . Because each RISE is idempotent and failure-
reentrant and the CB suggests that the failure point is at
least 𝑁 , resuming from 𝑁 is typically correct. Exceptions oc-
cur when RISE is a read-RISE or RMW-RISE and TSA status
is True. In such cases, if the actual failure point was 𝑁 + 1
with most of the store instructions completed except for CB
overwrite, the shadow memory referenced in 𝑅𝐼𝑆𝐸𝑁 could
have been updated already. In such a scenario, resuming from
the 𝑅𝐼𝑆𝐸𝑁 would result in loading the already updated value.
This leads to re-executing the 𝑅𝐼𝑆𝐸𝑁+1, violating correctness.
Furthermore, if the TSA status is False, the recovery pro-
gram should not resume from 𝑅𝐼𝑆𝐸𝑁+1, since the 𝑅𝐼𝑆𝐸𝑁 was
incomplete at failure time.
For RMW-RISE, resumption at 𝑅𝐼𝑆𝐸𝑁 with TSA True is

incorrect because SSAPP guarantees the RMW instruction is
always the final instruction of an RMW-RISE. Prior work has
shown that RMW instructions internally execute serializing
instructions, ensuring all stores become globally visible [46].
Thus, resuming at (𝑅𝐼𝑆𝐸𝑁 , RMW, True) would incorrectly
execute the RMW operation twice. Conversely, the state
(𝑅𝐼𝑆𝐸𝑁 , RMW, False) must not resume at 𝑅𝐼𝑆𝐸𝑁+1, as doing
so would skip the necessary RMW operation, resulting in
incorrect behavior.
In Figure 3, we clarify with a concrete example where

naive resumption from the CB is incorrect. The example
code is a simple increment implementing the write-after-
read (WAR) pattern. SSAPP would split it into two RISEs
and let us assume that a failure occurred after finishing most
of the 𝑅𝐼𝑆𝐸𝑁+1 execution but before updating the CB. The
post-failure program reads CB as 𝑁 with TSA status True.
However, resuming from𝑅𝐼𝑆𝐸𝑁 is incorrect because it would
load the already updated value from %ptr and increment it
again in 𝑅𝐼𝑆𝐸𝑁+1, leading to erroneous results. Hence, in
this scenario, resuming at 𝑅𝐼𝑆𝐸𝑁 is incorrect.

4 Implementation
This section details the implementation of RISE creation,
data persistence (transient data, TSA, L2P, CB), and resum-
able RISE computation from TSA and CB. The pre-failure

converter transforms the input into a sequence of RISEs
and applies SSAPP techniques. The post-failure genera-
tor inserts the resumption computation logic on top of the
modified pre-failure code. These compiler extensions out-
put pre-failure and post-failure LLVM IR, respectively. The
generated IR invokes SSAPP library functions. The SSAPP
runtime library manages function invocations, thread con-
text, and allocated shadow memory.

4.1 Pre-Failure Code Converter
We elaborate on the pre-failure code modifications, including
(1) creating a conversion-ready LLVM IR from the source
code, (2) converting each basic block (BB) to RISE, (3) redi-
recting transient data to PMEM-backed memory (including
Load-to-Persist), (4) persisting program progress on CB, and
(5) embedding TSA. The SSAPP converter retains the in-
put program’s control flow and data flow by merely insert-
ing non-destructive instructions such as the unconditional
branch. When memory writes are necessary, they target
newly allocated memory, preserving the original program’s
data layout.
Inlining Call Sites As the pre-failure modifier iterates

over each BB within a failure atomic function, a called func-
tion may not be modified. However, all function call sites
within the programmer-delineated region must also be idem-
potent from the memory access perspective. For functions
with source code available, SSAPP inlines them as part of the
FASE and processes them as if they were part of the parent
function. For external functions without available source
code, SSAPP requires reentrancy and idempotency at the
PMEM level.

Register Demotion The SSAPP converter may miss tran-
sient data passed across RISEs via registers. Fortunately,
LLVMprovides a transformation pass called -reg2mem, which
restricts inter-BB data flow to the stack. In LLVM IR, stack
values are allocated using the alloca instruction. Unlike
virtual registers, which are transparently mapped to the
physical register during object file compilation, this stack
memory is explicitly allocated, stored, and loaded. With ex-
plicitly named variables that span across RISEs, SSAPP can
naturally identify the “live-in” and “live-out” data for each
RISE and pre-allocate the shadow memory for each data.
Converting Basic Block to RISE To provide an under-

lying assumption for correct resumable RISE computation,
each RISE either reads or writes data to memory but not both,
with RMW as an exception. The key idea is eliminating the
Write-After-Read (WAR) pattern by separating a sequence
of load instructions with an unconditional branch. SSAPP
uses RISE delimiters such as sfence, function calls, atomic
operations, and the tail instruction of load sequences. For
each delimiter, SSAPP adds an unconditional branch to split
them into two back-to-back basic blocks.

TSA Implementation All types smaller than 8 bytes are
cast to an 8-byte type and use the Most Significant Bit (MSB)



ISMM ’25, June 17, 2025, Seoul, Republic of Korea Yun Joon Soh, Sihang Liu, Steven Swanson, and Jishen Zhao

as the torn-bit. An 8-byte type is split into two 4-byte integers
where each is stored in 8-byte storage with the MSB being
the torn-bit. A RISE is considered atomically executed if all
torn-bits match the CB’s torn-bit.
SSAPP maintains a per RISE torn-bit flipper, an 8-byte

value initialized with all bits set to 1 except the MSB. The
MSB is flipped within each RISE, and a bitwise xor is applied
to the data so that all stores within the RISE have the same
torn-bit (MSB of data is always zero, due to zero-extension,
zext, or logical shift right, lshr). Furthermore, flipping per
entry distinguishes one iteration from another even when a
single RISE is executed back-to-back.

In theory, SSAPP sets a torn-bit for every 8-byte memory
access. However, in practice, it is unnecessary to apply TSA
to all memory accesses. As shown in the middle three rows of
Table 2, a recovery thread can naively resume from the write
RISE regardless of the TSA status. Thus, we only apply TSA
to read RISE and RMW RISE. For RMW operations, SSAPP
checks the operand bit-width to determine if TSA embedding
is possible.
TSA for RMW Fallback Plan SSAPP may attempt to

use an RMW with a wider bit-width than the original and
repurpose one of the unused bits as a torn-bit. This may alter
the original program’s data layout and must therefore be
applied cautiously. If RMW with a wider bit-width is not
supported, SSAPP aborts. Implementing such a fallback plan
is left for future work.
Load-to-Persist Insertion At its core, SSAPP persists

each loaded value to the corresponding shadow stack. For
each load instruction in read RISE, SSAPP inserts store in-
structions that take the loaded value and the pre-allocated
L2P storage as operands. We apply TSA to L2P as well.
Crash Buoy Insertion Updating the Crash Buoy is as

simple as or’ing the RISE ID with the torn-bit flipper and
storing it in the per-thread Crash Buoy storage. The RISE ID
is hard-coded.
Adding Trailing Fence SSAPP adds fence instructions

for each RISE if it does not already have a trailing memory
barrier. With the trailing fence, all writes are globally visible
before executing the subsequent RISE.

4.2 Post-failure Generator
The post-failure generator inserts instructions to read the
per-thread contexts, determines the TSA state, computes the
resumable RISE, and resumes execution. To handle ambigu-
ous RISE boundaries (e.g., ConditionalBr), the post-failure
generator may split a RISE to resolve the ambiguity.
Loading Per-Thread Context The generated code in-

serts operations to load and inspect the thread context (FASE
ID, RISE ID, variable-to-storage mapping, CB, etc.). This pro-
cess includes restoring the shadow stack, CBID, and RISE
flippers.

Computing Resumable RISE If the crashed RISE is not a
read RISE, execution always resumes from the current CBID

without checking the TSA. If the crashed RISE is a read RISE,
SSAPP invokes a runtime library function to decide whether
to resume execution from the crashed RISE or skip it based
on the TSA inspection outcome.

Resuming Execution The generator inserts a conditional
branch based on the resumption decision, which leads to
either one of the two switch statement versions: one that
jumps to the crashed RISE or one that jumps to the successor
RISE. Each switch statement compares the CBID against all
possible RISEs and jumps to their corresponding hard-coded
destinations.

4.3 Runtime Library
The runtime library contains reusable logic across workloads:
thread context management, shadow memory management,
and the resumption computation algorithm.
Thread Context Management Each thread maintains

its context, including the valid bit, thread ID, currently exe-
cuting FASE ID, Crash Buoy, and shadow memory mapping
information.
Shadow Memory Management Each type of shadow

memory is associated with two files: mapping data and actual
data. Mapping data maps the shadow ID, which is a tuple
consisting of (FASE ID, RISE ID, Inst ID), to the offset of
allocated memory within the data file.

ResumptionComputationThe algorithm’s key decision
is whether to re-execute the crashed RISE, based on the TSA
state. To check the TSA state, the runtime library iterates
the shadow memory associated with the CBID. If the torn-
bits of all associated shadow memory match the CB torn-bit,
the function returns false, indicating that execution should
resume from the successor of the crashed RISE.

5 Evaluation
To evaluate SSAPP’s performance improvement, we use a
variety of benchmarks including basic data structures (B+-
tree, RB-tree, hashmap, skiplist), transactional benchmark
(TATP, TPC-C, Vacation), and lock-free data structures (list,
hash, binary-search tree).

5.1 Configuration
We evaluate our work on a single-socket system with an
Intel Xeon Gold 6230 CPU, which has 20 physical cores each
with a 32 KiB L1 cache. We used a 2:2:2 topology where
each DRAM/PMEM channel has 16 GB, and 128 GB capac-
ity, respectively (a total of 96 GB/768 GB of DRAM/PMEM).
All binaries were compiled using clang version with -O1
optimization flag. We emulated the eADR environment by
eliminating cacheline flushes at the program language level.



Compiler-Assisted Crash Consistency for PMEM ISMM ’25, June 17, 2025, Seoul, Republic of Korea

B+Tree
 

0.00

0.25

0.50

0.75

Th
ro

ug
hp

ut
 (M

op
s)

RBTree
0.0

0.5

1.0

Hashmap
0

1

2

3

Skiplist
0.00

0.25

0.50

0.75

TATP
0

5

10

TPC-C
0.0

0.5

1.0

Vacation
0.0

0.2

0.4

LF List
0.0

2.5

5.0

7.5

LF Hash
0

2

4

LF BST
0.00

0.25

0.50

0.75

Volatile Hand PMDK Clob Mirror SSAPP

Figure 4. Throughput of Evaluated Workloads. This figure compares the single-threaded throughput (in millions of
operations per second, MOPS) across various workloads and crash consistency mechanisms. Empty bars indicate inapplicable
configurations, such as applying Clobber-NVM (Clob) to lock-free (LF) data structures. Volatile refers to the baseline version
of the program, running on volatile memory without any crash consistency mechanisms. Hand represents a hand-optimized
implementation in which the programmer pre-allocates dedicated logging memory per thread and per transaction type; this is
applicable only to the TATP and TPC-C benchmarks.

5.2 Performance Overhead
To assess SSAPP’s performance, we evaluated four data struc-
tures, three transactional benchmarks (TATP, TPC-C, Vaca-
tion), and three lock-free data structures (list, hash, binary-
search tree). Missing bars indicate inapplicable cases, such
as applying Clobber-NVM [50] to lock-free data structure or
applying Mirror [7] to transactional benchmarks. We used
the same configuration, parameters, and workloads as in
prior works [7, 50]: 50:50 read/write ratio for B+Tree, RB-
Tree, Hashmap, Skiplist, subscriber transaction for TATP,
new order transaction for TPC-C, make reservation transac-
tion for Vacation, and 80:20 read/write ratio for lock-free data
structures. Figure 4 shows the single-threaded raw through-
put of workloads in million operations per second (MOPS).
We make the following observations.

First, for basic data structures (B+Tree, RBTree, Hashmap,
Skiplist), SSAPP outperforms Clobber-NVM by 1.4×. The re-
duced number of memory barriers and higher cache locality
contribute to the performance advantage of SSAPP.

Second, SSAPP outperforms Clobber-NVM for TATP and
TPCC by 7.5× and 1.2×, respectively. SSAPP shows signifi-
cantly greater performance improvement for TATP than for
TPC-C. This is because TATP transactions are smaller than
those in TPC-C, resulting in fewer data loads. With fewer
load instructions, SSAPP performs fewer basic block (BB)
splits. Since SSAPP’s overhead is proportional to the number
of BBs (e.g., storing Crash Buoy) its overhead for TATP is
smaller than in prior work.

Third, as shown in TATP and TPC-C results, programmer-
tuned persistence (Hand) outperforms the PMEM program-
ming library and Clobber-NVM. However, SSAPP achieves
similar performance to hand-tuned solutions without the
programming burden.

Fourth, for the vacation benchmark, a workload with fre-
quent queries, SSAPP achieved 1.9× higher throughput than
the Clobber-NVM. The frequent query within the transac-
tion resulted in frequent clobber writes where Clobber-NVM

would append a log entry in PMEM. PMDK showed a nearly
identical performance to Clobber-NVM because PMDK had
only a few additional logging to make when compared to
the Clobber-NVM. Unlike these logging-based approaches,
SSAPP does not create a log entry for persistence. For SSAPP,
a clobber write is translated into an additional unconditional
branch instruction and store operations to shadow mem-
ory. As these shadow memories have high temporal locality,
SSAPP outperformed the logging-based approaches for the
vacation benchmark.

Lastly, SSAPP performs nearly as fast as a hand-crafted
persistent lock-free data structure [7] that does not fit on
the L1 cache. If the data fits on the L1 cache as in Mirror-
List, SSAPP performs worse because additional writes (e.g.,
Load-to-Persist) impose higher pressure on the L1 data cache,
frequently causing L1 cache misses. We measured the aver-
age number of instructions executed per operation (insert,
remove, read). We found that the SSAPP version has about
4.8× more instructions than Mirror but executes at 2.3×
higher IPC, resulting in a total of 2× slowdown.
Based on these observations, we conclude that SSAPP

can transparently provide crash consistency for both the
transactional and non-transactional workloads with minimal
performance overhead.

5.3 Scalability
To understand the scalability of SSAPP, we measured the
throughput of four lock-based and lock-free data structures
when exponentially increasing the number of threads from 1
to 16. The transactional benchmarks were excluded from the
scalability evaluation because the available implementations
did not support concurrency. We report raw throughput in
a million operations per second. We make the following
observations from the results.
For four lock-based data structures, SSAPP showed 1.4×

higher throughput than Clobber-NVM when varying the



ISMM ’25, June 17, 2025, Seoul, Republic of Korea Yun Joon Soh, Sihang Liu, Steven Swanson, and Jishen Zhao

5 10 15

1
2
3

Th
ro

ug
hp

ut
 (M

op
s) B+Tree

5 10 15

2

4

RBTree

5 10 15
0

20

Hashmap

5 10 15
0

5

10
Skiplist

5 10 15

10
20
30

LF List

5 10 15
0

25

50

LF Hash

5 10 15

5

10

LF BST

Number of Threads Volatile PMDK Clob Mirror SSAPP

Figure 5. Scalability of Workloads. Throughput scalability (in MOPS) of various workloads is shown as the number of
threads increases from 1 to 16. The left four panels represent lock-based data structures (B+Tree, RBTree, Hashmap, Skiplist),
while the right four represent lock-free (LF) data structures (List, Hash, BST). Volatile represents the baseline program
running on DRAM without persistence mechanisms. Clob, PMDK, and Mirror are prior crash-consistency approaches, and
SSAPP is the proposed system. SSAPP achieves comparable or better scalability than prior solutions while maintaining crash
consistency guarantees.

number of threads. When compared against the volatile ver-
sion, a vanilla program executed onDRAM, SSAPP closed the
gap to 60% across data structures, up from 52% for Clobber-
NVM.

For lock-free data structures, SSAPP showed comparable
scalability to Mirror for Hash and BST. SSAPP exhibited a
2% overall slowdown for these two workloads. As discussed
in Section 5.2, List performs well for Mirror, even better
than the volatile version, as observed in the original paper.
Regardless of the absolute performance, SSAPP scales well
even for such a short function with RMW instructions.

5.4 Litmus Example Validation
We designed a framework to validate crash consistency us-
ing small litmus tests. We implemented a transformation
pass for crash consistency validation purposes. It makes
the following modifications to the pre-failure code: (1) in-
serts printf call instructions at the beginning of each RISE,
which prints the FASE ID and RISE ID, (2) reads an integer
environment variable called SSAPP_STOPPER, (3) inserts a
conditional branch at the end of each RISE that exits the
program if the SSAPP_STOPPER matches the RISE ID. Using
the modified pre-failure code, the tester checks whether the
post-failure thread can recover from the intentionally cre-
ated inconsistent program state. A successful recovery yields
a program state identical to that produced by the vanilla pro-
gram. For all possible RISEs in each litmus program, SSAPP
passed the crash consistency test.

6 Related Work
6.1 Register-Level Persistence Support
Various works assume or propose register-checkpointing to
prevent stale load after a power failure [21, 53]. However,
this involves splitting the program into fine-grained regions,
typically limited by the number of physical registers. This
limitation motivated static analysis of the input program

to identify regions where the compiler pass inserts a fence
instruction.
ReplayCache leveraged the recovery-via-resumption to

enable volatile caches for non-volatile memory [53]. It uses
Just-In-Time register checkpointing to preserve the store
operands and re-execute store instructions during recovery.
When ReplayCache detects a potential register stack spill, it
inserts a fence instruction to ensure that store operand data
remains in registers. This approach is suitable for systems
without volatile memory support but with Just-In-Time reg-
ister snapshots. However, frequent sfence instructions can
degrade performance. Capri [21] also provides register-level
replayability, but requires undo+redo logging for persistence
and architectural modifications to support register check-
pointing.

6.2 Testing, Debugging, and Automation Tools
PMEM programming is difficult; issuing flush and fence in-
structions carefully to ensure crash consistency without in-
curring high overhead is non-trivial. Overuse of flush and
fence instructions is often referred to as a performance bug.
Failure to ensure crash consistency under specific failure
scenarios constitutes a correctness bug.
Many prior works have focused on testing and debug-

ging PMEM programs. Researchers have explored various ap-
proaches, including brute-force/model checking [11, 18, 26],
dynamic analysis [6, 34, 35], fuzzing [32] and symbolic ex-
ecution [43]. Despite extensive research, new categories of
correctness bugs continue to be discovered [3, 10, 12, 13, 27].

Recent work strives to automate PMEM programming to
some extent, but shows clear limitations in terms of accuracy
and performance overhead. Ayudante automatically inserts
calls to the PMDK library — an industry-standard PMEM pro-
gramming library — using a reinforcement-learning-based
approach. However, it remains experimental due to lim-
ited training/testing data and lacks high accuracy [16]. Hip-
pocrates attempts to automatically fix bugs by inserting flush



Compiler-Assisted Crash Consistency for PMEM ISMM ’25, June 17, 2025, Seoul, Republic of Korea

and fence instructions. However, the programmer is still re-
sponsible for optimizing performance by removing redun-
dant operations and writing post-failure recovery code [42].

6.3 Other Solutions for Persistence
Several works have proposed system-level solutions for per-
sistence [14, 23, 24, 28, 30, 45, 49, 54, 58]. These systems aim
to make persistence overhead transparent to the program-
mer by handling it at the system stack level. Many of these
works target specific hardware configurations [49, 54, 58]
and often proposed new interfaces [23, 24, 30].

Other works propose software-hardware co-designs that
aim to simplify programming by offering a well-defined per-
sistence model at low performance cost [1, 9, 20, 25, 33, 40,
52, 55, 57]. These approaches typically use a dedicated buffer
to collect write operations before updating designated mem-
ory locations on PM. In addition, they extend the existing
ISA with dedicated instructions to control persist ordering.
However, many of these works require non-trivial hardware
modifications such as an extended cache coherence protocol.

7 Conclusion
To benefit from a byte-addressable, non-volatile memory, a
programmer-friendly, low-overhead crash consistency solu-
tion is needed. To address these limitations, we built SSAPP,
a compiler extension that transparently adds crash consis-
tency to a wide range of programs. SSAPP modifies the input
program into a collection of failure reentrant, idempotent
sections without affecting the input program logic or incur-
ring high overhead. The generated recovery code recovers
partially executed program states into a crash consistent
state by diligently resuming the execution from where a sud-
den power failure may have occurred. SSAPP bridges the gap
between performance and reliability, providing a practical
path to robust persistent memory programming.

Acknowledgments
This paper is supported by the PRISM and ACE centers in
JUMP 2.0, an SRC program sponsored by DARPA.

References
[1] Mohammad Alshboul, Prakash Ramrakhyani, William Wang, James

Tuck, and Yan Solihin. 2021. BBB: Simplifying Persistent Programming
using Battery-Backed Buffers. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). 111–124. https:
//doi.org/10.1109/HPCA51647.2021.00019

[2] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014.
Atlas: Leveraging Locks for Non-Volatile Memory Consistency. In
Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications (Portland, Oregon,
USA) (OOPSLA ’14). Association for Computing Machinery, New York,
NY, USA, 433–452. https://doi.org/10.1145/2660193.2660224

[3] Zhangyu Chen, Yu Hua, Yongle Zhang, and Luochangqi Ding. 2022.
Efficiently detecting concurrency bugs in persistent memory programs.
In Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Lausanne,

Switzerland) (ASPLOS ’22). Association for Computing Machinery,
New York, NY, USA, 873–887. https://doi.org/10.1145/3503222.3507755

[4] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:
Making Persistent Objects Fast and Safe with next-Generation, Non-
Volatile Memories. SIGARCH Comput. Archit. News 39, 1 (March 2011),
105–118. https://doi.org/10.1145/1961295.1950380

[5] Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, and Vijay Nagara-
jan. 2020. Lazy Release Persistency. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20).
Association for ComputingMachinery, New York, NY, USA, 1173–1186.
https://doi.org/10.1145/3373376.3378481

[6] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. 2021. Fast, Flexible,
and Comprehensive Bug Detection for Persistent Memory Programs. As-
sociation for Computing Machinery, New York, NY, USA, 503–516.
https://doi.org/10.1145/3445814.3446744

[7] Michal Friedman, Erez Petrank, and Pedro Ramalhete. 2021. Mirror:
Making Lock-Free Data Structures Persistent. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (Virtual, Canada) (PLDI 2021). Association
for Computing Machinery, New York, NY, USA, 1218–1232. https:
//doi.org/10.1145/3453483.3454105

[8] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish
Narayanasamy, Peter M. Chen, and Thomas F. Wenisch. 2018. Per-
sistency for Synchronization-Free Regions. SIGPLAN Not. 53, 4 (jun
2018), 46–61. https://doi.org/10.1145/3296979.3192367

[9] Vaibhav Gogte, William Wang, Stephan Diestelhorst, Peter M. Chen,
Satish Narayanasamy, and Thomas F. Wenisch. 2020. Relaxed Persist
Ordering Using Strand Persistency. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). 652–665.
https://doi.org/10.1109/ISCA45697.2020.00060

[10] Hamed Gorjiara, Weiyu Luo, Alex Lee, Guoqing Harry Xu, and Brian
Demsky. 2022. Checking Robustness to Weak Persistency Models.
In Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (San Diego, CA,
USA) (PLDI 2022). Association for Computing Machinery, New York,
NY, USA, 490–505. https://doi.org/10.1145/3519939.3523723

[11] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. 2021. Jaaru:
Efficiently Model Checking Persistent Memory Programs. In Proceed-
ings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA) (AS-
PLOS 2021). Association for Computing Machinery, New York, NY,
USA, 415–428. https://doi.org/10.1145/3445814.3446735

[12] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. 2022. Yashme:
Detecting Persistency Races. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22).
Association for Computing Machinery, New York, NY, USA, 830–845.
https://doi.org/10.1145/3503222.3507766

[13] Zhilei Han and Fei He. 2025. Robustness Verification for Checking
Crash Consistency of Non-volatile Memory. In Proceedings of the 30th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 1 (Rotterdam, Nether-
lands) (ASPLOS ’25). Association for Computing Machinery, New York,
NY, USA, 955–969. https://doi.org/10.1145/3669940.3707269

[14] George Hodgkins, Yi Xu, Steven Swanson, and Joseph Izraelevitz.
2023. Zhuque: Failure is Not an Option, it’s an Exception. In 2023
USENIX Annual Technical Conference (USENIX ATC 23). USENIX Asso-
ciation, Boston, MA, 833–849. https://www.usenix.org/conference/
atc23/presentation/hodgkins

[15] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Kee-
ton, and Patrick Eugster. 2017. NVthreads: Practical Persistence for
Multi-Threaded Applications. In Proceedings of the Twelfth European

https://doi.org/10.1109/HPCA51647.2021.00019
https://doi.org/10.1109/HPCA51647.2021.00019
https://doi.org/10.1145/2660193.2660224
https://doi.org/10.1145/3503222.3507755
https://doi.org/10.1145/1961295.1950380
https://doi.org/10.1145/3373376.3378481
https://doi.org/10.1145/3445814.3446744
https://doi.org/10.1145/3453483.3454105
https://doi.org/10.1145/3453483.3454105
https://doi.org/10.1145/3296979.3192367
https://doi.org/10.1109/ISCA45697.2020.00060
https://doi.org/10.1145/3519939.3523723
https://doi.org/10.1145/3445814.3446735
https://doi.org/10.1145/3503222.3507766
https://doi.org/10.1145/3669940.3707269
https://www.usenix.org/conference/atc23/presentation/hodgkins
https://www.usenix.org/conference/atc23/presentation/hodgkins


ISMM ’25, June 17, 2025, Seoul, Republic of Korea Yun Joon Soh, Sihang Liu, Steven Swanson, and Jishen Zhao

Conference on Computer Systems (Belgrade, Serbia) (EuroSys ’17). As-
sociation for Computing Machinery, New York, NY, USA, 468–482.
https://doi.org/10.1145/3064176.3064204

[16] Hanxian Huang, Zixuan Wang, Juno Kim, Steven Swanson, and Jishen
Zhao. 2021. Ayudante: A Deep Reinforcement Learning Approach
to Assist Persistent Memory Programming. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21). USENIX Association, 789–
804. https://www.usenix.org/conference/atc21/presentation/huang-
hanxian

[17] Intel Coporation. 2019. PMDK. https://pmem.io/pmdk/
[18] Intel Corporation. 2019. PMReorder. https://pmem.io/pmdk/

pmreorder
[19] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-

Atomic Persistent Memory Updates via JUSTDO Logging. SIGARCH
Comput. Archit. News 44, 2 (March 2016), 427–442. https://doi.org/10.
1145/2980024.2872410

[20] Jungi Jeong and Changhee Jung. 2021. PMEM-Spec: PersistentMemory
Speculation (Strict Persistency Can Trump Relaxed Persistency). In
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Virtual,
USA) (ASPLOS ’21). Association for Computing Machinery, New York,
NY, USA, 517–529. https://doi.org/10.1145/3445814.3446698

[21] Jungi Jeong, Jianping Zeng, and Changhee Jung. 2022. Capri: Compiler
and Architecture Support for Whole-System Persistence. In Proceed-
ings of the 31st International Symposium on High-Performance Paral-
lel and Distributed Computing (Minneapolis, MN, USA) (HPDC ’22).
Association for Computing Machinery, New York, NY, USA, 71–83.
https://doi.org/10.1145/3502181.3531474

[22] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra. 2017. ATOM: Atomic
Durability in Non-volatile Memory through Hardware Logging. In
2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 361–372. https://doi.org/10.1109/HPCA.2017.50

[23] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. 2019. SplitFS: Reducing Soft-
ware Overhead in File Systems for Persistent Memory. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles (Huntsville,
Ontario, Canada) (SOSP ’19). Association for Computing Machinery,
New York, NY, USA, 494–508. https://doi.org/10.1145/3341301.3359631

[24] Juno Kim, Yun Joon Soh, Joseph Izraelevitz, Jishen Zhao, and Steven
Swanson. 2020. SubZero: Zero-Copy IO for Persistent Main Mem-
ory File Systems. In Proceedings of the 11th ACM SIGOPS Asia-Pacific
Workshop on Systems (Tsukuba, Japan) (APSys ’20). Association for
Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.
1145/3409963.3410489

[25] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven
Pelley, Sihang Liu, Peter M. Chen, and Thomas F. Wenisch. 2016.
Delegated persist ordering. In 2016 49th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). 1–13. https:
//doi.org/10.1109/MICRO.2016.7783761

[26] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran,
and Jeff Jackson. 2014. Yat: A Validation Framework for Persis-
tent Memory Software. In 2014 USENIX Annual Technical Confer-
ence (USENIX ATC 14). USENIX Association, Philadelphia, PA, 433–
438. https://www.usenix.org/conference/atc14/technical-sessions/
presentation/lantz

[27] Hayley LeBlanc, Shankara Pailoor, Om Saran K R E, Isil Dillig, James
Bornholt, and Vijay Chidambaram. 2023. Chipmunk: Investigating
Crash-Consistency in Persistent-Memory File Systems. In Proceedings
of the Eighteenth European Conference on Computer Systems (Rome,
Italy) (EuroSys ’23). Association for Computing Machinery, New York,
NY, USA, 718–733. https://doi.org/10.1145/3552326.3567498

[28] Hayley LeBlanc, Nathan Taylor, James Bornholt, and Vijay Chi-
dambaram. 2024. SquirrelFS: using the Rust compiler to check file-
system crash consistency. In 18th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 24). USENIX Association,
Santa Clara, CA, 387–404. https://www.usenix.org/conference/osdi24/
presentation/leblanc

[29] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. 2019. Recipe: Converting Concurrent DRAM
Indexes to Persistent-Memory Indexes. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (Huntsville, Ontario,
Canada) (SOSP ’19). Association for Computing Machinery, New York,
NY, USA, 462–477. https://doi.org/10.1145/3341301.3359635

[30] Ruibin Li, Xiang Ren, Xu Zhao, Siwei He, Michael Stumm, and Ding
Yuan. 2022. ctFS: Replacing File Indexing with Hardware Memory
Translation through Contiguous File Allocation for Persistent Memory.
In 20th USENIX Conference on File and Storage Technologies (FAST 22).
USENIX Association, Santa Clara, CA, 35–50. https://www.usenix.
org/conference/fast22/presentation/li

[31] Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung. 2018.
iDO: Compiler-Directed Failure Atomicity for Nonvolatile Memory.
In 2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). 258–270. https://doi.org/10.1109/MICRO.2018.00029

[32] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. 2021.
PMFuzz: Test Case Generation for Persistent Memory Programs. As-
sociation for Computing Machinery, New York, NY, USA, 487–502.
https://doi.org/10.1145/3445814.3446691

[33] Sihang Liu, Korakit Seemakhupt, Gennady Pekhimenko, Aasheesh
Kolli, and Samira Khan. 2019. Janus: Optimizing Memory and Storage
Support for Non-Volatile Memory Systems. In 2019 ACM/IEEE 46th
Annual International Symposium on Computer Architecture (ISCA). 143–
156.

[34] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch,
Aasheesh Kolli, and Samira Khan. 2020. Cross-Failure Bug Detection
in Persistent Memory Programs. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20).
Association for ComputingMachinery, New York, NY, USA, 1187–1202.
https://doi.org/10.1145/3373376.3378452

[35] Sihang Liu, YizhouWei, Jishen Zhao, Aasheesh Kolli, and Samira Khan.
2019. PMTest: A Fast and Flexible Testing Framework for Persistent
Memory Programs. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association for
Computing Machinery, New York, NY, USA, 411–425. https://doi.org/
10.1145/3297858.3304015

[36] Suyash Mahar, Sihang Liu, Korakit Seemakhupt, Vinson Young, and
Samira Khan. 2021. Write Prediction for Persistent Memory Systems.
In 2021 30th International Conference on Parallel Architectures and
Compilation Techniques (PACT). 242–257. https://doi.org/10.1109/
PACT52795.2021.00025

[37] Suyash Mahar, Mingyao Shen, Terence Kelly, and Steven Swanson.
2023. Snapshot: Fast, Userspace Crash Consistency for CXL and PM
Using msync. arXiv:2310.16300 [cs.DC] https://arxiv.org/abs/2310.
16300

[38] Suyash Mahar, Mingyao Shen, TJ Smith, Joseph Izraelevitz, and
Steven Swanson. 2024. Puddles: Application-Independent Recov-
ery and Location-Independent Data for Persistent Memory. In Pro-
ceedings of the Nineteenth European Conference on Computer Sys-
tems, EuroSys 2024, Athens, Greece, April 22-25, 2024. ACM, 575–589.
https://doi.org/10.1145/3627703.3629555

[39] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi
Zhou, Ramnatthan Alagappan, Karin Strauss, and Steven Swanson.
2017. Atomic In-Place Updates for Non-Volatile Main Memories
with Kamino-Tx. In Proceedings of the Twelfth European Conference
on Computer Systems (Belgrade, Serbia) (EuroSys ’17). Association
for Computing Machinery, New York, NY, USA, 499–512. https:
//doi.org/10.1145/3064176.3064215

https://doi.org/10.1145/3064176.3064204
https://www.usenix.org/conference/atc21/presentation/huang-hanxian
https://www.usenix.org/conference/atc21/presentation/huang-hanxian
https://pmem.io/pmdk/
https://pmem.io/pmdk/pmreorder
https://pmem.io/pmdk/pmreorder
https://doi.org/10.1145/2980024.2872410
https://doi.org/10.1145/2980024.2872410
https://doi.org/10.1145/3445814.3446698
https://doi.org/10.1145/3502181.3531474
https://doi.org/10.1109/HPCA.2017.50
https://doi.org/10.1145/3341301.3359631
https://doi.org/10.1145/3409963.3410489
https://doi.org/10.1145/3409963.3410489
https://doi.org/10.1109/MICRO.2016.7783761
https://doi.org/10.1109/MICRO.2016.7783761
https://www.usenix.org/conference/atc14/technical-sessions/presentation/lantz
https://www.usenix.org/conference/atc14/technical-sessions/presentation/lantz
https://doi.org/10.1145/3552326.3567498
https://www.usenix.org/conference/osdi24/presentation/leblanc
https://www.usenix.org/conference/osdi24/presentation/leblanc
https://doi.org/10.1145/3341301.3359635
https://www.usenix.org/conference/fast22/presentation/li
https://www.usenix.org/conference/fast22/presentation/li
https://doi.org/10.1109/MICRO.2018.00029
https://doi.org/10.1145/3445814.3446691
https://doi.org/10.1145/3373376.3378452
https://doi.org/10.1145/3297858.3304015
https://doi.org/10.1145/3297858.3304015
https://doi.org/10.1109/PACT52795.2021.00025
https://doi.org/10.1109/PACT52795.2021.00025
https://arxiv.org/abs/2310.16300
https://arxiv.org/abs/2310.16300
https://arxiv.org/abs/2310.16300
https://doi.org/10.1145/3627703.3629555
https://doi.org/10.1145/3064176.3064215
https://doi.org/10.1145/3064176.3064215


Compiler-Assisted Crash Consistency for PMEM ISMM ’25, June 17, 2025, Seoul, Republic of Korea

[40] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris
Volos, and Kimberly Keeton. 2017. An Analysis of Persistent Memory
Use with WHISPER. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems (Xi’an, China) (ASPLOS ’17). ACM, New York, NY,
USA, 135–148. https://doi.org/10.1145/3037697.3037730

[41] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H. Noh, and Beom-
seok Nam. 2019. Write-Optimized Dynamic Hashing for Persistent
Memory. In 17th USENIX Conference on File and Storage Technolo-
gies (FAST 19). USENIX Association, Boston, MA, 31–44. https:
//www.usenix.org/conference/fast19/presentation/nam

[42] Ian Neal, Andrew Quinn, and Baris Kasikci. 2021. Hippocrates: Healing
Persistent Memory Bugs without Doing Any Harm. In Proceedings
of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA)
(ASPLOS 2021). Association for Computing Machinery, New York, NY,
USA, 401–414. https://doi.org/10.1145/3445814.3446694

[43] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon,
Simon Peter, and Baris Kasikci. 2020. AGAMOTTO: How Persistent
is your Persistent Memory Application?. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 1047–1064. https://www.usenix.org/conference/osdi20/
presentation/neal

[44] Matheus Almeida Ogleari, Ethan L. Miller, and Jishen Zhao. 2018.
Steal but No Force: Efficient Hardware Undo+Redo Logging for Per-
sistent Memory Systems. In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 336–349. https:
//doi.org/10.1109/HPCA.2018.00037

[45] Yanqi Pan, Hao Huang, Yifeng Zhang, Wen Xia, Xiangyu Zou, and
Cai Deng. 2024. Delaying Crash Consistency for Building A High-
Performance Persistent Memory File System. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 43, 9 (2024),
2620–2634. https://doi.org/10.1109/TCAD.2024.3375792

[46] Yun Joon Soh, Steven Swanson, and Jishen Zhao. 2024. ENTS: Flush-
and-Fence-Free Failure Atomic Transactions. In Proceedings of the
International Symposium on Memory Systems (Alexandria, VA, USA)
(MEMSYS ’23). Association for Computing Machinery, New York, NY,
USA, Article 25, 16 pages. https://doi.org/10.1145/3631882.3631907

[47] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.
Mnemosyne: Lightweight Persistent Memory. SIGARCH Comput. Ar-
chit. News 39, 1 (mar 2011), 91–104. https://doi.org/10.1145/1961295.
1950379

[48] X. Wei, D. Feng, W. Tong, J. Liu, and L. Ye. 2020. MorLog: Morphable
Hardware Logging for Atomic Persistence in Non-Volatile Main Mem-
ory. In 2020 ACM/IEEE 47th Annual International Symposium on Com-
puter Architecture (ISCA). 610–623. https://doi.org/10.1109/ISCA45697.
2020.00057

[49] Jian Xu, Lu Zhang, AmirsamanMemaripour, Akshatha Gangadharaiah,
Amit Borase, Tamires Brito Da Silva, Steven Swanson, andAndy Rudoff.
2017. NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File

System. In Proceedings of the 26th Symposium on Operating Systems
Principles (Shanghai, China) (SOSP ’17). Association for Computing
Machinery, New York, NY, USA, 478–496. https://doi.org/10.1145/
3132747.3132761

[50] Yi Xu, Joseph Izraelevitz, and Steven Swanson. 2021. Clobber-NVM:
Log Less, Re-Execute More. In Proceedings of the 26th ACM Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Virtual, USA) (ASPLOS 2021). Asso-
ciation for Computing Machinery, New York, NY, USA, 346–359.
https://doi.org/10.1145/3445814.3446730

[51] Yi Xu, Suyash Mahar, Ziheng Liu, Mingyao Shen, and Steven Swanson.
2024. CXL Shared Memory Programming: Barely Distributed and
Almost Persistent. arXiv:2405.19626 [cs.DC] https://arxiv.org/abs/
2405.19626

[52] Sujay Yadalam, Nisarg Shah, Xiangyao Yu, and Michael Swift. 2022.
ASAP: A Speculative Approach to Persistence. In 2022 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA).
892–907. https://doi.org/10.1109/HPCA53966.2022.00070

[53] Jianping Zeng, Jongouk Choi, Xinwei Fu, Ajay Paddayuru Shree-
pathi, Dongyoon Lee, Changwoo Min, and Changhee Jung. 2021.
ReplayCache: Enabling Volatile Cachesfor Energy Harvesting Sys-
tems. In MICRO-54: 54th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (Virtual Event, Greece) (MICRO ’21). As-
sociation for Computing Machinery, New York, NY, USA, 170–182.
https://doi.org/10.1145/3466752.3480102

[54] Lu Zhang and Steven Swanson. 2019. Pangolin: A Fault-Tolerant
Persistent Memory Programming Library. In Proceedings of the 2019
USENIX Conference on Usenix Annual Technical Conference (Renton,
WA, USA) (USENIX ATC ’19). USENIX Association, USA, 897–911.

[55] Ming Zhang and Yu Hua. 2023. Silo: Speculative Hardware Logging
for Atomic Durability in Persistent Memory. In 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). 651–
663. https://doi.org/10.1109/HPCA56546.2023.10071034

[56] Mingxing Zhang, Teng Ma, Jinqi Hua, Zheng Liu, Kang Chen, Ning
Ding, Fan Du, Jinlei Jiang, Tao Ma, and Yongwei Wu. 2023. Par-
tial Failure Resilient Memory Management System for (CXL-based)
Distributed Shared Memory. In Proceedings of the 29th Symposium
on Operating Systems Principles (Koblenz, Germany) (SOSP ’23). As-
sociation for Computing Machinery, New York, NY, USA, 658–674.
https://doi.org/10.1145/3600006.3613135

[57] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P.
Jouppi. 2013. Kiln: Closing the performance gap between systems
with and without persistence support. In 2013 46th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 421–432.

[58] Shengan Zheng, Morteza Hoseinzadeh, and Steven Swanson. 2019.
Ziggurat: A Tiered File System for Non-Volatile Main Memories and
Disks. In 17th USENIX Conference on File and Storage Technologies
(FAST 19). USENIX Association, Boston, MA, 207–219. https://www.
usenix.org/conference/fast19/presentation/zheng

Received 2025-03-18; accepted 2025-05-03

https://doi.org/10.1145/3037697.3037730
https://www.usenix.org/conference/fast19/presentation/nam
https://www.usenix.org/conference/fast19/presentation/nam
https://doi.org/10.1145/3445814.3446694
https://www.usenix.org/conference/osdi20/presentation/neal
https://www.usenix.org/conference/osdi20/presentation/neal
https://doi.org/10.1109/HPCA.2018.00037
https://doi.org/10.1109/HPCA.2018.00037
https://doi.org/10.1109/TCAD.2024.3375792
https://doi.org/10.1145/3631882.3631907
https://doi.org/10.1145/1961295.1950379
https://doi.org/10.1145/1961295.1950379
https://doi.org/10.1109/ISCA45697.2020.00057
https://doi.org/10.1109/ISCA45697.2020.00057
https://doi.org/10.1145/3132747.3132761
https://doi.org/10.1145/3132747.3132761
https://doi.org/10.1145/3445814.3446730
https://arxiv.org/abs/2405.19626
https://arxiv.org/abs/2405.19626
https://arxiv.org/abs/2405.19626
https://doi.org/10.1109/HPCA53966.2022.00070
https://doi.org/10.1145/3466752.3480102
https://doi.org/10.1109/HPCA56546.2023.10071034
https://doi.org/10.1145/3600006.3613135
https://www.usenix.org/conference/fast19/presentation/zheng
https://www.usenix.org/conference/fast19/presentation/zheng

	Abstract
	1 Introduction
	2 Background
	2.1 Crash-Consistent Programming Primitives
	2.2 Persistent CPU Cache
	2.3 Programming Models and Tools
	2.4 Motivation

	3 Design
	3.1 Challenge and Assumptions
	3.2 Partitioning into RISE
	3.3 Persisting Transient Data
	3.4 Embedding Metadata for Atomicity Check
	3.5 Recovery Algorithm
	3.6 Correctness

	4 Implementation
	4.1 Pre-Failure Code Converter
	4.2 Post-failure Generator
	4.3 Runtime Library

	5 Evaluation
	5.1 Configuration
	5.2 Performance Overhead
	5.3 Scalability
	5.4 Litmus Example Validation

	6 Related Work
	6.1 Register-Level Persistence Support
	6.2 Testing, Debugging, and Automation Tools
	6.3 Other Solutions for Persistence

	7 Conclusion
	Acknowledgments
	References

