
Crash Consistency in Encrypted Non-Volatile Main Memory Systems

Sihang Liu1, Aasheesh Kolli2,3, Jinglei Ren4, and Samira Khan1

1University of Virginia 2VMware Research 3Pennsylvania State University 4Microsoft Research

Abstract
Non-Volatile Main Memory (NVMM) systems provide high

performance by directly manipulating persistent data in-
memory, but require crash consistency support to recover data
in a consistent state in case of a power failure or system crash.
In this work, we focus on the interplay between the crash con-
sistency mechanisms and memory encryption. Memory encryp-
tion is necessary for these systems to protect data against the
attackers with physical access to the persistent main memory.
As decrypting data at every memory read access can signifi-
cantly degrade the performance, prior works propose to use a
memory encryption technique, counter-mode encryption, that
reduces the decryption overhead by performing a memory read
access in parallel with the decryption process using a counter
associated with each cache line. Therefore, a pair of data and
counter value is needed to correctly decrypt data after a system
crash. We demonstrate that counter-mode encryption does not
readily extend to crash consistent NVMM systems as the system
will fail to recover data in a consistent state if the encrypted
data and associated counter are not written back to memory
atomically, a requirement we refer to as counter-atomicity.

We show that naı̈vely enforcing counter-atomicity for all
NVMM writes can serialize memory accesses and results in
a significant performance degradation. In order to improve
the performance, we make an observation that not all writes
to NVMM need to be counter-atomic. The crash consistency
mechanisms rely on versioning to keep one consistent copy
of data intact while manipulating another version directly in-
memory. As the recovery process only relies on the unmodi-
fied consistent version, it is not necessary to strictly enforce
counter-atomicity for the writes that do not affect data re-
covery. Based on this insight, we propose selective counter-
atomicity that allows reordering of writes to data and asso-
ciated counters when the writes to persistent memory do not
alter the recoverable consistent state. We propose efficient
software and hardware support to enforce selective counter-
atomicity. Our evaluation demonstrates that in a 1/2/4/8-
core system, selective counter-atomicity improves performance
by 6/11/22/40% compared to a system that enforces counter-
atomicity for all NVMM writes. The performance of our se-
lective counter-atomicity design comes within 5% of an ideal
NVMM system that provides crash consistency of encrypted
data at no cost.

1. Introduction
The emerging non-volatile memory (NVM) technologies (e.g.,
PCM, STT-RAM, ReRAM and Intel 3D XPoint [22, 28, 29,
57]) provide disk-like durability with an access latency close to

DRAM [12]. These new memory technologies are blurring the
difference between storage and memory, making it possible to
store and manipulate persistent data in-place in memory. Such
systems with non-volatile main memory (NVMM), also referred
to as persistent memory systems improve the performance of
various applications by managing persistent data directly in
main memory [5, 7, 7, 10, 26, 31, 34, 43, 58, 62, 63, 64].

Two fundamental challenges need to be addressed in a use-
ful NVMM system that provides legacy storage system sup-
ports for persistent data. The first one concerns the recover-
ability of persistent data from memory in a consistent state in
the event of a system failure (e.g., unexpected power outages,
kernel/application crashes). Ensuring the recoverability of data
requires a specific ordering of updates to persistent data all the
way to memory, a guarantee not provided by today’s systems
in order to enable performance optimizations with caching and
reordering of accesses in the memory hierarchy [12, 37]. For
example, consider adding a new node to a persistent linked list
in NVMM. The list can become inconsistent in the presence of
a system failure, if the crash happens after the pointer update
that adds the new node to the list reaches NVMM, but before
the node itself is written back to NVMM, a problem referred to
as crash consistency problem. Recent works use low-level pro-
gramming interfaces to govern the order of updates to NVMM
or high-level transactions (e.g., redo or undo logging mecha-
nisms) to maintain versions of data to ensure crash consistency
in NVMM systems [2, 11, 12, 15, 17, 19, 20, 24, 25, 26, 27,
30, 32, 34, 37, 45, 53, 54].

The second, orthogonal challenge in designing NVMM sys-
tems concerns with the security of persistent data in memory.
Data in any non-volatile device is persistent across system fail-
ures by definition and therefore, vulnerable to malicious attack-
ers who have physical access to the devices [8, 38, 61]. En-
cryption is an effective solution to protect NVM data from the
attackers. In an encrypted NVMM system, every read access
to memory needs to pay an additional penalty for decrypting
data in the memory controller. A common memory encryption
technique referred to as the counter-mode encryption, has been
adopted for NVMM to reduce the high overhead of decryption
latency during a memory read access [3, 38, 44, 47, 60, 61].
The counter-mode encryption technique associates each cache
line of data with a counter such that the cache line is encrypted
with a bit string generated with the associated counter. The
same bit string is used to decrypt the cache line on subse-
quent read accesses to memory. The counter-mode encryption
hides the decryption latency by generating the bit string for de-
cryption using the counter buffered on-chip in a counter cache,
while the data is still being fetched from memory [3, 47, 59].



In this work, we show that, even though the counter-mode en-
cryption technique hides the decryption latency for the critical
memory read accesses, it does not readily extend to NVMM
systems that require data to be recoverable in a consistent state
across system failures. As the counters and data are located
in different addresses, every write to NVMM generates two
write requests: one for the encrypted data and the other for the
counter. These two writes to NVMM (for the encrypted data
and counter) have to be performed atomically to ensure that
persistent data in memory can be decrypted across system fail-
ures. For example, if the system fails after the encrypted data
reaches NVMM, but before its counter has been persisted, the
memory controller will try to decrypt that data using a stale
counter value upon recovery and will fail to recover the orig-
inal data. We refer to the constraint of counter and encrypted
data being updated in NVMM atomically as counter-atomicity
and argue that the encrypted NVMM systems need to provide
support for counter-atomicity to ensure crash consistency in
NVMM systems.

Ensuring counter-atomicity is challenging as existing sys-
tems cannot atomically write two accesses to memory. One
solution to this problem is to extend the cache line to co-locate
data and its counter in the same cache line and then, use a wider
memory bus to write back the extended cache line atomically
using just one write access. Unfortunately, this design is im-
practical as widening the memory bus to accommodate an extra
counter requires extra pins in the memory interface, exacerbat-
ing the problem of limited memory bandwidth [23, 40, 51].
The goal of this work is to design an NVMM system that en-
forces counter-atomicity at a low cost and a low overhead.

We propose a simple hardware mechanism to enforce
counter-atomicity in an NVMM system. A special write queue
in the memory controller ensures that either both data and its
counter of a write access have been persisted or neither of them
has been persisted. Unfortunately, ensuring counter-atomicity
for every write access to memory potentially makes each pair
of data and counter write sequential. It results in a significant
performance degradation, restricting the optimizations through
reordering, buffering, and coalescing of writes in the memory
controller. However, we observe that it is still possible to de-
crypt and recover data consistently even when all writes are
not enforced to be counter-atomic. Our key insight is that only
a small subset of writes to NVMM need counter-atomicity to
be strictly enforced in order to maintain recoverability of the
persistent data. For example, the insertion of a new node to a
persistent linked list in NVMM consists of two sets of writes:
one set of writes creates a new node with valid data and the
other updates the head pointer of the list to point to the new
node. The writes related to the creation of the new node have to
reach NVM before the write to the pointer to ensure the recov-
erability of the list in a consistent state. Therefore, the writes
to the new node do not affect the recoverability of the linked
list until the write to the pointer reaches NVMM. The writes
to the node and the corresponding counter updates can be co-
alesced, buffered or reordered as long as they are performed
before the write to the pointer, while the write to the pointer
itself requires strict counter-atomicity. This observation also

extends to the common crash consistency mechanisms, such as
undo/redo logging, shadow copying, etc., which rely on ver-
sioning of data updates to ensure crash consistency. For ex-
ample, the logging mechanism maintains one version of data
in the log and another version in the original data structure. It
ensures that at a given point in time, only one of the versions
is modified so that the other version can be used to recover
data if there is a crash during the update. As the version of
data being modified plays no role in recovery, strictly enforc-
ing counter-atomicity for those writes is not necessary. There-
fore, we propose that NVMM writes that do not manipulate
the recoverable state provide a window during the program ex-
ecution when the data and counter writes can be reordered to
significantly improve performance. We refer to this design as
selective counter-atomicity (details in Section 4). We propose
necessary software interface and hardware support to selec-
tively enforce counter-atomicity in an NVMM system (details
in Section 5).

To summarize, the contributions of this work are:

• We show that the commonly used counter-mode encryption
does not extend to the NVMM systems that require data
to be recoverable in a consistent state across system fail-
ures. This is the first work to introduce the requirement of
counter-atomicity that ensures both data and the associated
counter have to be persisted atomically in order to guaran-
tee crash consistency in an encrypted NVMM system.

• We introduce selective counter-atomicity by demonstrating
that it is not required to enforce counter-atomicity for all
writes. We observe that the common NVM crash consis-
tency mechanisms rely on versioning of data. Data updates
to one of the versions do not immediately affect the consis-
tent state, and therefore, it is possible to selectively enforce
counter-atomicity for only the writes that manipulate the
recoverable state. The rest of the data and counter writes
can be coalesced, buffered, and reordered to improve per-
formance.

• Our evaluation demonstrates that selective counter-
atomicity improves performance by 6/11/22/40% over en-
forcing counter-atomicity for all writes in a system with
1/2/4/8 cores, and it performs within 5% of an ideal de-
sign that does not have any overhead in enforcing counter-
atomicity in our evaluated system configurations.

2. Background and Motivation
In this section, we first discuss the crash consistency support
for the non-volatile main memory (NVMM) systems and then
demonstrate the challenges in providing crash consistency sup-
port when NVMM is encrypted.

2.1. Crash Consistency for NVMM Systems

Applications running on the non-volatile main memory sys-
tem manipulate persistent data in-place in memory with di-
rect read and write accesses (e.g., using load/store instruc-
tions). Performance optimizations in the memory system, such
as caching and writeback mechanisms coalesce and reorder
writes to NVMM, and therefore, such a direct manipulation
of persistent data does not provide any guarantee on the or-



der in which writes reach the persistent memory. This reorder-
ing of writes can lead to an inconsistent state in the presence
of system failures, such as power outages and application/k-
ernel crashes. For example, consider adding a new node to
a persistent linked list in memory. The insertion operation
consists of two kinds of updates: adding the new node and
updating the pointer to the new node. The linked list can
fail to recover to a consistent state if a power failure hap-
pens after the pointer to the new node has been persisted in
memory, but the write that fills the new node with valid data
did not persist in NVMM. Ensuring recoverability of persis-
tent data in a consistent state after a crash is defined as crash
consistency. Prior works propose various hardware and soft-
ware mechanisms to support crash consistency for the NVMM
systems [2, 11, 19, 20, 25, 26, 27, 30, 34, 37, 39, 45, 53].
These crash consistency mechanisms can be broadly classi-
fied into two categories. The first category of works focuses
on providing support for an ordering of memory updates us-
ing persist barriers, which guarantee that the preced-
ing writes have persisted prior to any write that comes after-
ward in the program order [19, 25, 27, 34, 37]. For exam-
ple, Intel’s implementation of the persist barrier writes
back specific cache lines (that comes before the barrier) from
the cache to the memory controller write queue and guarantees
that all accepted writeback requests in the write queue will be
persisted to NVMM in the event of a system failure, using a
hardware support referred to as asynchronous DRAM refresh
(ADR) [19, 21, 33, 41]. The second category of works fo-
cuses on providing high-level APIs, such as libraries and trans-
actional interfaces to store persistent data in NVMM to ease
the programmers’ burden on manipulating persistent objects in
memory [2, 11, 20, 24, 26, 30, 39, 45, 53, 65].

2.2. Crash Consistency for Encrypted NVMM Systems

In this work, we demonstrate that directly applying the existing
crash consistency mechanism to an encrypted NVMM system
does not guarantee a consistent recovery of data in case of a
power failure or system crash. Encrypting NVMM is highly
important for protecting data, as attackers who have physical
access to an NVM module can access information stored in the
persistent memory [38, 61]. In this section, first, we briefly
introduce the encryption techniques for NVMM systems. Sec-
ond, we discuss the challenge of providing crash consistency
in an encrypted NVMM system, and third, we provide a walk-
through example of how data becomes inconsistent while in-
serting a node to an encrypted persistent linked list.
2.2.1. Encryption Technique. The NVMM systems encryp-
t/decrypt data on every memory access using an encryption en-
gine located in the memory controller. Unfortunately, mem-
ory reads are on the critical path of the program execution
and the additional latency to decrypt data after every read
miss can significantly degrade the overall performance. In or-
der to hide the decryption latency, prior works propose to use
the counter-mode encryption that makes it possible to paral-
lelize the read access and decryption of data in NVMM sys-
tems [14, 44, 47, 60, 61]. In this technique, data is not directly
encrypted, instead, a unique counter associated with each write
access is encrypted to generate a bit string called one-time-

padding (OTP) (shown in Equation 1). This OTP is XORed
with the plaintext data to generate the encrypted data (shown
in Equation 2, Figure 1(a)). As a result, during a memory
read access, the OTP is generated using the associated counter
while data is still being fetched from NVMM. When the read
access completes, the encryption engine XORs this OTP with
the fetched encrypted data to generate the plaintext (shown in
Equation 3, Figure 1(b)).

OT P = En(address|counter,key) (1)

EncryptedCacheline = OT P⊕ plaintext (2)

plaintext = OT P⊕EncryptedCacheline (3)

OTP 
Generation

Encrypted
Data

(a)

Plaintext Data

OTP

Address Counter Plaintex
Data

(b)

Encrypted Data

OTP

Address Counter

Key

OTP 
GenerationKey

Encryption during a 
write access

Decryption during 
a read access

Figure 1: The counter-mode encryption technique: (a) encrypting
data during a write access, and (b) decrypting data during a read
access.

As counters are required to encrypt and decrypt data for
all memory accesses, the counters are buffered on-chip in a
counter cache [59], such that the encryption engine does not
need to perform an extra memory read access to fetch the
counter value. Figure 2(a) shows the serialized decryption
technique that adds additional latency to read accesses and Fig-
ure 2(b) shows that the read access is faster with the counter-
mode encryption technique as the read access and decryption
can be performed in parallel.

(a)

(b)

Memory Read

Memory Read

Decryption (OTP)

Decryption

time

Plaintext

Plaintext

shorter latency

Serialized 

Parallelized 

Figure 2: Reduction in latency with the counter-mode encryption
technique during a read access.

2.2.2. The Challenge. The main problem with providing crash
consistency for an encrypted NVMM system is that each en-
crypted data is associated with a counter in the counter-mode
encryption, but this relationship is not exposed to the crash con-
sistency mechanisms. While decrypting a cache line after a
crash, the memory controller assumes that each memory ad-
dress has its latest counter in NVMM. However, decryption
will fail if the versions of data and counter are not in sync (ei-
ther data or counter in NVMM is stale).

Figure 3 demonstrates that a system failure can result in out-
of-sync data and counter. Every write access to NVMM con-
sists of two separate write requests, one for the encrypted data
and the other for the counter. If a system failure occurs after
the data write reaches NVMM and before the counter write
does, the memory controller would observe a stale counter
value upon system recovery, introducing an inconsistency in
data recovery, as shown in Figure 3(a). Similar inconsistency
occurs if a failure happens after the counter reaches NVMM but
the data has not yet been persistent, as shown in Figure 3(b).



Data

time time time

pe
rs
is
t_
ba
rr
ie
r

Inconsistent Inconsistent Consistent

(a) (b) (c)

Counter Counter Data Counter

Data

Figure 3: (a) Inconsistent decryption if counter write fails, (b)
Inconsistent decryption if data write fails, and (c) Consistent de-
cryption if data and counter writes are atomic.

As OriginalVal = En(address|counter,key)⊕EncryptedVal,
then decryption failure happens in these two cases:

En(address|counterstale,key)⊕EncryptedValnew 6= OriginalVal

En(address|counternew,key)⊕EncryptedValstale 6= OriginalVal
(4)

2.2.3. An Example. Here, we provide an example that shows
an encrypted persistent linked list can become inconsistent due
to out-of-sync data and counter values, if a crash happens while
updating the list. Figure 4(a) shows the linked list where each
node contains an item and a next pointer to the consecutive
node, and the head pointer points to the most recently added
node. Adding a new node involves three steps as shown in the
Figure: The first step creates a new node (step 1 ). The step 2
updates the next pointer of the new node, so that it is inserted
in front of the current head of the list. Finally, in step 3 , the
head pointer is updated so that it points to the new node. When
the linked list is encrypted, each update in the linked list be-
comes associated with a counter update. Figure 4(b) shows the
plaintext data and counter values at each step, where the shaded
boxes represent the updated values. In the beginning, the head
points to the next node and its associated counter value is “10”.
At step 1 and 2 , the new node is updated with its item and
the new pointer value and the associated counters are also up-
dated with new values. At step 3 , the head pointer is updated
to point to the new node and the latest counter value for the
head becomes “14”. This means that the value of the head
pointer gets encrypted with the latest counter “14” before it
is persisted to memory. However, if a failure happens before
the new counter value “14” gets persisted to NVMM, the val-
ues of the head pointer and its associated counter in NVMM
become out-of-sync. During the recovery, the decryption en-
gine will try to decrypt that the head pointer with the stale
counter (“10”), making decryption unsuccessful according to
Equation 4 (shown in Figure 4(c)). Potentially, the value of the
head pointer can become a random number after the incorrect
decryption (Equation 3) and the program can mistakenly access
a random location in memory. To support crash consistency in
an encrypted NVMM, we argue that it is required to enforce an
atomic behavior of the counter and data writes, which we refer
to as counter-atomicity (shown in Figure 3(c)).
2.2.4. Our Goal. The goals of this work are: First, demon-
strate that the encrypted data and associated counter need to
be atomic in order to support crash consistency in encrypted
NVMM systems (Section 3.1). Second, discuss the challenges
of the possible solutions to provide this counter-atomicity to
enforce an atomic behavior of the counter and data writes (Sec-
tion 3.2). Third, propose an efficient hardware-software design
to enforce counter-atomicity based on the key observation that
not all writes need to be counter-atomic (Section 4).

    2    3     1
new_node

head pointer (new)     head pointer (old)           

item    

    0
❶

❷

❸

   0xffaa0x
ffb

b

next 
pointer

(a) The steps in adding a new node to a persistent linked list.

0xffbb
10      14

new_node->item

head

new_node->next

0xffaa
10

null
12

3
11

step

counter

counter

counter

0xffaa
10

0xffaa
13

3
11

0xffaa
13

3
11

persist_barrier

❶
Node Creation

❷
Node Update

❸
Head Update

(b) The timeline of the data and counter update at each step. The shaded
boxes represent the updated values in each step.

Data encrypted with counter=14

Fail to decrypt

Memory Read

Decryption

time

OTP generated with counter=10

(c) Recovery fails due to inconsistent data and counter values of the head
pointer.

Figure 4: An example of inconsistency while adding a node to a
persistent linked list.

3. Counter-Atomicity
The key to maintaining crash consistency in an encrypted
NVMM system using counter-mode encryption technique is to
guarantee that data and the associated counter are persisted in
an atomic manner. We refer to this requirement as counter-
atomicity for crash consistency in an encrypted NVMM. In this
section, first we define the requirement of counter-atomicity.
Then, we discuss the trade-offs in the designs that meet the
requirement of counter-atomicity.

3.1. Requirement

A counter-atomic write operation needs to guarantee that ei-
ther both data and its counter associated with the write access
have persisted (the counter-atomic write is complete) or neither
data nor its counter has persisted (the counter-atomic write is
incomplete) in case of a system crash. This requirement pre-
vents a mismatch in version for data and counter values in a
counter-atomic write.

3.2. Enforcing Counter-atomicity

In this section, we describe the challenges in enforcing counter-
atomicity, propose simple hardware designs to solve the chal-
lenges, and discuss the trade-offs in each design.
3.2.1. Challenge 1: How to ensure data and counter reach
NVMM at the same time? In today’s systems, there is no
guarantee that the separate counter and data writes will reach
the NVMM at the same time. If a failure happens in the middle
of the counter and data writes, that data cannot be decrypted
due to the mismatch in the versions of data and counter. A
naı̈ve solution is to write both data and the associated counter
together with one memory access by co-locating them in the
same access. To accommodate the extra counter, such a de-
sign requires (i) increasing the size of the cache line in the last-
level cache (LLC), and (ii) increasing the width of the memory



     Cache

En

Data (64B)             Counter  (8B)

Encrypted NVMM 

De

72-bit bus

Encrypt with the 
counter from cache

Decrypt with the
counter from memory

❶

❸❷

❹

+ counter (72B)
encrypted 

data 

(a) The co-located data and counter design
with a wider bus.

Encrypted NVMM 

Cache Counter$

En De

72-bit bus

Encrypt with the  
counter from cache

Decrypt with the 
counter from cache

❶

❷

+ counter (72B)
encrypted 

data 

(b) The co-located data and counter design
with a wider bus and a counter cache.

Encrypted NVMM 

Cache Counter$

En De

64-bit bus

Counters

❶

❷

Encrypt with 
the counter 
from cache

Decrypt with 
the counter 
from cache

Counter 
cache miss/ counter (64B)

encrypted 
data 

(c) The separate data and counter design
with the existing bus and a counter cache.

Figure 5: Different counter-atomic designs.

Write counter + data (72B)Read counter + data (72B)

time

Decryption Latency

Read Latency

Encryption Latency

Write Latency

time

Read Access Write Access

Decrypt w/ counter ( from mem) Encrypt w/ counter (from cache)

(a) The co-located data and counter design with a wider bus.

time

Write counter + data (72B)Read counter + data (72B)

Decryption Latency

Read Latency

Encryption Latency

Write Latency

time

Encrypt w/ counter (from cache)Decrypt w/ counter (from cache)

(b) The co-located data and counter design with a wider bus and a counter cache.

Write data (64B) Read data (64B)

time

Write counter

Decryption Latency

Read Latency

Encryption Latency

Write Latency

time

Encrypt w/ counter (from cache)Decrypt w/ counter (from cache)

(c) The separate data and counter design with the existing bus and a counter cache.

Figure 6: Timeline of read and write accesses with three different design shown in Figure 5.

bus. As every cache line of data needs an 8B counter in the
counter-mode encryption (as shown in prior works [3, 44, 59]),
a typical cache line size will increase from 64B to 72B and the
memory width will increase from 64-bit to 72-bit. We refer
to this design as the co-located data and counter design with
a wider bus. Figure 5(a) shows the high-level organization of
this design. During a write access, the memory controller first
encrypts the data (step 1 ) and then writes the encrypted data
and its counter simultaneously to NVMM using the wider bus
(step 2 ). However, this design is not efficient as it serializes
the read access and the decryption process. The memory con-
troller first needs to fetch both data and its counter from mem-
ory (step 3 ) and only then it can decrypt that data using the
co-located counter fetched from NVMM (step 4 ). Such a se-
rialized design violates the main benefit of the counter-mode
encryption technique. Figure 6(a) shows the timeline of the se-
rialized read access and write access of this design. However,
it is possible to mitigate the decryption overhead by adding a
counter cache, as shown in Figure 5(b). The cached counters
enable overlapping the decryption process with the read access.
While the missed cache line is being fetched from the NVMM
(step 1 ), the memory controller starts generating the OTP us-
ing the counter from the counter cache (step 2 ). However,
in this design, if the requested counter is not in the counter
cache, the memory access results in a counter cache miss and
the memory controller fetches the entire cache line again, as
the data and counter are co-located and the access granular-
ity is 72B. We refer to this design as the co-located data and
counter design with a wider bus and a counter cache. Fig-
ure 6(b) shows the timeline of this improved design, where
the read latency overlaps the decryption latency if the counter
cache lookup results in a hit.

Trade-offs. The benefit of co-locating the data and counter
in one memory access is that this design eliminates any
chance of having the data and counter values out-of-sync in
NVMM and therefore, always guarantees that the writes will
be counter-atomic. However, as the cache line size increases to
72B (64B data + 8B counter), this design requires increasing
the memory bus width from 64-bit to 72-bit. As a result, the
counter writeback requires extra pins and wires in the mem-
ory bus, exacerbating the problem of limited memory band-
width [23, 40, 51]. We believe that widening the memory bus
is not practical and study alternative designs that can enforce
counter-atomicity with the existing memory interface.

3.2.2. Challenge 2: How to enforce counter-atomicity with-
out changing the memory interface? The major drawback in
the two aforementioned designs (Figure 5(a) and 5(b)) is that
they require an expensive and impractical change in the mem-
ory interface. Therefore, a more practical design is to write
back data and counters using separate write requests, but pro-
vide some hardware support to ensure that the write accesses
are counter-atomic: a memory write request is marked as com-
plete only when both data and counter have become persistent.
We propose a simple hardware support in the memory con-
troller that tracks data and the associated counter in the write
queue and ensures that the write access is blocked until both
the data and counter become persistent. We discuss the details
of the implementation of this design in Section 5.

Figure 5(c) shows the high-level organization of this design.
As the data and counter are written separately with two dif-
ferent write accesses, they are not co-located in NVMM. In-
stead, the counters are stored in a separate address space. For
the same reason, the memory bus remains unchanged (64-bit).
The read access is similar to the previous designs where the



read access and decryption happen in parallel (step 1 ). When
the read access misses the counter in the counter cache, the
memory controller fetches a whole cache line of counters from
memory (step 2 ). Figure 6(c) shows the timeline of this de-
sign. The latency to complete a write request becomes higher
as a single write request now consists of two accesses (one for
the data cache line and one for the counter cache line).

Trade-offs. This simple implementation not only mitigates
the overhead of the serialized read access and decryption la-
tency, but also ensures counter-atomicity without changing the
memory interface. However, this mechanism leads to per-
formance degradation as every write access becomes counter-
atomic, blocking other dependent writeback requests if either
the data or counter write request has not yet been persisted and
therefore, can potentially serialize all write accesses. We re-
fer to this design that always writes back data and counter in
a counter-atomic manner as the full counter-atomicity design.
In Section 4, we propose an optimization where only a subset
of the write accesses needs to maintain counter-atomicity, but
still guarantees that the system remains crash consistent.

4. Selective Counter-Atomicity
In this section, first, we discuss the high overhead of enforcing
full counter-atomicity (Section 4.1). Then we propose to mit-
igate its overhead by selectively enforcing counter-atomicity
to a small subset of writes without affecting the recoverabil-
ity of programs in a consistent state based on the observation
that not all writes equally affect consistent data recovery (Sec-
tion 4.2). We refer to this design as selective counter-atomicity
and provide necessary interface and primitives to leverage it in
different persistent applications (Section 4.3).

4.1. The Overhead of Full Counter-Atomicity

Enforcing counter-atomicity is necessary to make sure that data
in NVM is consistent across system failures. In this design, a
write access is complete only when both the data and associated
counter are persistent. Strictly enforcing counter-atomicity for
all writes to NVMM leads to high performance overhead in
two ways. First, every write access has to initiate a correspond-
ing counter write access. It doubles the amount of write traf-
fic as our design writes back data and counter at a cache line
granularity with two separate write accesses. Though a write
access needs to update only one counter for the whole cache
line of data, in this design, the counter is updated at a cache
line granularity, which unnecessarily increases the write traffic.
In multi-core systems, this extra contention between data and
counter writeback becomes more prominent. Second, the write
access blocks dependent writes until both the data and counter
write accesses are complete. Figure 7(a) shows the timeline of
a sequence of updates in a full counter-atomicity design, where
the white and shaded boxes represent the write accesses for the
data and counters, respectively. The figure demonstrates the
worst-case scenario where each write access is dependent on
the prior one. The second write access has to wait until the
first one completes and the third write access has to wait un-
til the second one completes. In comparison to this design, a
write access does not wait for its counter write to complete to
make forward progress in an ideal design that does not require

time

1 2 3
1 2 3

Data Writes

Counter Writes

(a) Full counter-atomicity.

time

Data Writes

Counter Writes

1~3

1~3

saved

(b) Without counter-atomicity.

Figure 7: The timeline of write accesses in a full counter-atomicity
design vs. an ideal design that does not enforce counter-atomicity.
counter-atomicity. As a result, the write accesses can be re-
ordered, coalesced, and written back in parallel, as shown in
Figure 7(b). In the next section, we propose a design that re-
duces the overhead of the full counter-atomicity design leverag-
ing the key insight that not all writes need to be counter-atomic
to ensure consistent data recovery in an NVMM system.

4.2. Not All Writes Equally Affect Recoverability

We make an observation that not all write accesses equally af-
fect the recoverability of data in persistent applications. Persis-
tent applications usually build upon some transactional inter-
face to provide crash consistency across system failures. For
example, undo logging, redo logging, shadow logging, jour-
naling, etc. provide a guarantee that data can be recovered
in a consistent state even if there is a failure during an up-
date [9, 12, 26, 30, 32, 53]. All these mechanisms guarantee
crash consistency by maintaining two versions of data. For
example, the logging mechanism maintains one version in the
log and another version in the original data structure. There-
fore, the program ensures that only one of the versions is being
actively modified at a given point in time. While one of the
versions of data is being modified, the other unmodified ver-
sion is used for recovering the consistent state, if there is any
crash. As the version of data being modified plays no role in
recovery, it is not required to strictly enforce counter-atomicity
for the writes to that version of data. However, these updates to
the modified version need to be persisted in NVMM before the
old version becomes stale and the modified version becomes
the updated new consistent version. Therefore, it is possible to
guarantee a consistent recovery even without strictly enforcing
counter atomicity for all writes as long as these updates are per-
sisted in NVMM before they start affecting the recoverability
of the system.

Key Insight. Based on the observation that a subset of
writes to NVMM does not immediately affect the crash con-
sistent recovery of the underlying data structure, but instead
affects consistent recovery only after a certain future point in
program execution, our key insight is to relax the requirement
of counter-atomicity during these windows of program execu-
tion. Therefore, instead of enforcing full counter-atomicity for
all writes, we allow coalescing, buffering, and reordering of
both the data and counter writes during these windows of pro-
gram execution, as long as they are drained to NVMM at the
end of the window. Based on this key insight, we propose the
selective counter-atomicity design that only enforces counter-
atomicity for a subset of write accesses to provide better per-
formance without affecting the crash consistency guarantee.



Selective Counter-Atomicity in a Transaction. In this sec-
tion, we show how selective counter-atomicity can be applied
to improve the performance of a transaction implemented us-
ing undo-logging. Each transaction consists of three stages as
shown in prior works [20, 26, 34]:

1. Prepare. A log entry is created to back up the data being
modified.

2. Mutate. The data structure is modified in-place. As a con-
sistent state of the data is available in the backup created in
the prepare stage, this in-place modification does not affect
the recoverability of data.

3. Commit. Once data modification is finished, the transaction
is committed by invalidating the backup log entry created
in the prepare stage and marking the new modified state as
the current consistent state.

We summarize these stages in Table 1 and show when
counter-atomicity is necessary for each stage. During the pre-
pare stage, the backup copy of the data in the log is being
modified and therefore, cannot be used for consistent recov-
ery, while the original data is unmodified and used to recover
data in a consistent state. These writes to NVMM in the pre-
pare stage do not immediately affect the recoverability and do
not need to be strictly counter-atomic. Similarly, during the
mutate stage, the backup copy in the log is consistent and can
be used for consistent recovery, while the original data is be-
ing modified and thus, is not used for recovery. Therefore, the
writes in the mutate stage do not immediately affect the recov-
erability and do not need strict counter-atomicity. On the other
hand, the write in the commit stage atomically invalidates the
backup log entry. The consistent version of data remains in the
log entry until the commit stage, which switches the consistent
state from the log to the modified data in the original place. As
the write in this stage immediately affects the recovery of data
in a consistent state by marking which version of data to use
during the recovery procedure, the writes in this stage need to
be strictly counter-atomic.

Stage Backup Data Counter-Atomicity
Prepare 8 Inconsistent 4 Consistent 8 Unnecessary
Mutate 4 Consistent 8 Inconsistent 8 Unnecessary
Commit ? Unknown ? Unknown 4 Necessary

Table 1: The consistency states affecting counter-atomicity in dif-
ferent stages of a transaction with undo-logging.

Figure 8 shows the timeline of writes in different stages
of a transaction with both selective counter-atomicity and
full counter-atomicity (detailed performance analysis in Sec-
tion 6.3.1). Figure 8(a) shows the case where enforcing full
counter-atomicity serializes the writes in each stage. On the
other hand, selective counter-atomicity allows the counter and
data write accesses in the prepare and mutate stages to be re-
ordered such that the write accesses can be performed in paral-
lel (as shown in Figure 8(b)). However, this figure shows that
counter-atomicity must be enforced for the write accesses in
the commit stage.

4.3. Definition and Primitives
A selective counter-atomicity design has two requirements, (i)
strictly enforce counter-atomicity only for those updates that

CommitPrepare Mutate

1

1 2

2 3

3 4

4 5

5

persist_barrier
Data Writes

Counter Writes

time

(a) Full counter-atomicity.

timePrepare CommitMutate saved

1~2

1~2 5

5Data Writes

Counter Writes

3~4

3~4

(b) Selective counter-atomicity.

Figure 8: Timeline showing three stages of a transaction with
undo-logging under full counter-atomicity and selective counter
atomicity.
immediately affect the recoverability of data in a consistent
state, and (ii) allow coalescing, buffering and reordering of all
other data and counter writes during the program execution un-
til they affect the recoverability of data. To this end, we propose
two new primitives to extend Intel’s persistency support [19].
We expose two counter-related primitives to the high-level pro-
gram in order to let the programmers leverage the benefits of
selective counter-atomicity:
CounterAtomic variables. Any variable that immedi-

ately affects the recoverability of the underlying data structure
must be defined as CounterAtomic. The hardware is re-
sponsible to ensure that any update to this variable will write
back the encrypted value and the associated counter atomically.
For example, the head pointer in Figure 4 must be annotated
as CounterAtomic in a selective counter-atomicity design.

counter cache writeback() function. Selective
counter-atomicity allows reordering of write accesses (both
data and counters) that do not immediately affect consistent
recovery of data. However, the programmer needs to ensure
that all data and counter values for these writes are persisted
to NVMM before the point in program execution where they
start affecting the recoverability. We introduce a function that
writes back the programmer-specified counter cache lines, so
that the counters for the updated addresses persist to NVMM
on demand.

Discussion. The primitives above aims to maximize the per-
formance of the NVMM systems by trading off programma-
bility, similar to the primitives offered by memory persistency
models [19, 27, 34]. The responsibility of their correct usage
rests with the programmer. However, we expect that expert-
crafted libraries, such as NVML [20], will abstract away these
low-level primitives from regular programmers.

An example of using the primitives. Figure 9 shows
an example of using the selective counter-atomicity primitives
while implementing a transaction with undo-logging. The
three stages of the transaction (prepare, mutate and commit
in Table 1) are separated by persist barrier to make
sure the writes from these stages reach NVMM before the
next stage starts. There are two changes in the transaction
to leverage the benefits of selective counter-atomicity. First,
the writes from the prepare and mutate stages do not require
strict counter-atomicity. Therefore, we allow buffering and re-
ordering of the corresponding data and counter writes. How-
ever, before moving on to the next stage of the transaction, we
add the counter cache writeback() function to write-
back the latest data and counter values to memory. Sec-



1 struct Backup {
2 item_t item;
3 CounterAtomic bool valid;
4 };
5
6 //Undo-logging transaction to modify data
7 void UndoTx(Backup* log, item_t* data) {
8 // prepare: creating a valid backup for data in log
9 PrepareLog(log, data);

10 counter_cache_writeback(log);
11 persist_barrier();
12 // mutate: modify data in-place
13 MutateData(data);
14 counter_cache_writeback(data);
15 persist_barrier();
16 // commit: invalidate backup log
17 log->valid = false;
18 persist_barrier();
19 }

Figure 9: Implementation of an undo-logging transaction with se-
lective counter-atomicity primitives.

ond, the write to the valid variable in the backup log entry
(line 17) invalidates the log entry and commits the transaction.
This write access requires counter-atomicity as it switches the
current consistent data from the log to the modified in-place
data. Hence, we annotate the corresponding variable valid
as CounterAtomic.

5. Implementing Selective Counter-Atomicity
In this section, we provide the necessary hardware support to
selectively enforce counter-atomicity. First, we describe how
the selective counter-atomicity design is integrated in a sys-
tem with an encrypted NVMM. Then, we describe the hard-
ware implementation in the memory controller that enforces
counter-atomicity.

5.1. System Integration

Figure 10 shows the high-level overview of a sys-
tem that supports counter-atomicity. On the software
side, the programmer annotates the counter-atomic vari-
ables with CounterAtomic primitive and inserts the
counter cache writeback() operations to the program
according to the requirement in Section 4. The annotation
enables the memory controller to differentiate the counter-
atomic writes from the non-counter-atomic ones and write back
counter cache lines properly. Next, we discuss the hardware
support for counter-atomicity.

Encrypted NVMM

HW
NVMM 
Program

SW

Annotation:
CounterAtomic
Counter_cache_writeback()

Source code

Memory 
Controller

Annotated 
program

Compile

Annotated 
source code

Processor

Read/Write
(counter-atomic?)

Memory Access
(data and counter)

64bit bus

Figure 10: The high-level overview of a system using the selective
counter-atomicity primitives.

5.2. Hardware Implementation

Figure 11 depicts the memory controller in our design that sup-
ports (i) encryption and (ii) counter-atomicity. The encryption

Processors

LLC

Encryption 
Engine

Counter
Cache

NVM 
Coordinator

0x100

Data Write Queue

Counters Encrypted Data

00x100 1

❸

Encrypted NVMM

Failure ?

Battery

❶ ❾

❷

❺

❹

❿

⓫
❽ ❽

⓬

Counters

0x200:dirty

1

counter_cache_writeback(0x200)

Ready? ⓭ Ready? ⓭

Counter Write Queue

❻❼

Figure 11: Hardware implementation. The new components are
represented with shaded gray, and the persistent structures pro-
tected by ADR is shown in red.

support consists of an encryption engine and a counter cache.
The counter-atomicity support consists of a data write queue
and a counter write queue. Data encrypted by the encryption
engine is sent to the data write queue, and counters are sent
to the counter write queue. Next, we describe both encryption
and counter-atomicity support in detail.

5.2.1. Encryption and Decryption Support. In this section,
we describe the encryption and decryption process in the en-
cryption engine using the counters from the counter cache, and
the necessary steps when the counters are not available in the
counter cache.

Decryption for Read Accesses. When the processor issues
a read request, the NVM coordinator performs the read access
from NVMM. At the same time, the encryption engine accesses
the counter cache and uses the counter to generate the OTP for
the requested memory location, parallelizing the read access
and the decryption process. Then, the memory controller de-
crypts data by XORing the encrypted data and the OTP, com-
pleting the read access.

Encryption for Write Accesses. When the processor is-
sues a write request, first, the encryption engine generates a
new counter by incrementing the global counter, and accesses
the counter cache to update the stale counter. Second, it gen-
erates the OTP with the new counter value. Third, the NVM
coordinator XORs the plaintext data with the OTP and sends
the encrypted data to the data write queue.

Counter Cache Miss. As our system accesses memory at a
cache line granularity, the memory controller fetches a cache
line of counters (eight counters) that contains the requested
counter from the NVMM when a read or write access misses
the counter cache. If a read access misses the counter cache,
it has to stall and wait for the counter to be fetched from the
NVMM. Whereas, if a write access misses the counter cache,
it does not stall, as a new counter that is generated for each
write access is used for encryption. After the missing counter
cache line is fetched from memory, the encryption engine up-
dates the newly generated counter in the counter cache.

5.2.2. Counter-Atomicity Support. We have shown the hard-
ware support for encrypting and decrypting data. Next, we de-



scribe the key mechanisms in the memory controller that guar-
antee counter-atomicity.

Hardware Support for Counter-Atomic Writes. We ex-
tend Intel’s persistency support to ensure counter-atomicity of
writes. Intel’s persistency support relies on the hardware ADR
mechanism that ensures that any write request buffered in the
write queue of the memory controller will be written back
to NVMM with some backup power in case of a power fail-
ure [21, 33, 41, 46]. Therefore, this mechanism guarantees
that any write request that reaches the write queue will always
get persisted to the NVMM. We extend this ADR support to
both the data write queue and the counter write queue and en-
sure that only the entries that have both the data and associated
counter in the write queues get persisted to NVMM on event of
a power failure. To track the data and its counter, we add an ex-
tra ready bit to each data write queue and counter write queue
entry. The ready bits in both write queues are set only when
both the data and counter writes have been accepted by the
corresponding write queues. To make sure any failure does not
stop the operation that sets the ready bits in both write queues,
this operation is also protected with the ADR support.

A counter-atomic write takes three steps to complete. (i)
The NVM coordinator sends the encrypted data to the data
write queue, and at the same time, the encryption engine
sends the associated counter cache line to the counter write
queue. (ii) When the counter-atomic data write reaches the
data write queue, the memory controller checks whether or not
the counter write queue has the associated counter entry. If yes,
it then sets the ready bit in both entries to 1. Otherwise, the
ready bit remains 0. The memory controller performs the same
steps when the counter from a counter-atomic write reaches the
counter write queue. (iii) Both write queues only persist the en-
tries that have the ready bit set and any unready entry remains
blocked until its ready bit is set. During a system failure, both
write queues only drain the ready entries. Note that the regu-
lar non-counter-atomic write queue entries are always set to be
ready.

The practicality of extending the ADR support. In our
evaluated system, we use a 64-entry (4kB) data write queue
and a 16-entry (1kB) counter write queue (hardware overhead
details in Section 6.3.7). The ADR mechanism only has to
drain an additional 1kB of counter write queue in this case.
As future systems are considering flushing the entire processor
cache hierarchy (10s of MBs) [46], we believe that our addi-
tional overhead is modest and can be implemented in the im-
mediate future. We would like to emphasize that even though
our hardware mechanism to enforce counter-atomicity relies on
the ADR support, in reality, it can be implemented in the hard-
ware using any available hardware mechanism (e.g., hardware
logging) that guarantees that the data and counter write queue
entries are persistent in case of failure.

Steps During a Counter-Atomic Write. The following is
an example of a counter-atomic write to the physical address
0x100 (Figure 11). Step 1 : The processor issues a counter-
atomic write access to the physical address 0x100. Both the
NVM coordinator (step 2 ) and the encryption engine (step
3 ) receive the write. Step 4 : Let’s assume that the counter

for 0x100 is available in the counter cache. The encryption
engine increments the global counter and updates the counter
value in the counter cache accordingly. Then it computes the
OTP and sends the latest counter to the counter write queue.
Step 5 : The NVM coordinator XORs the plaintext data with
the OTP generated by the encryption engine, and sends the en-
crypted data to the data write queue. Step 6 : The data write
queue receives the data entry from the NVM coordinator and
checks the counter write queue but does not find the counter
entry. Therefore, this entry is unready. Step 7 : The counter
write queue receives the counter entry from the encryption en-
gine and checks the data write queue. Step 8 : As the asso-
ciated data write queue entry has been inserted, the memory
controller marks both entries as ready, completing the write
request.

Steps During a Counter Cache Writeback. Similar to the
data cache writeback, the counter cache writeback()
function writes back a user-specified cache line of counters
(eight counters) from the counter cache to NVMM without in-
validing the cache line, if the requested address hits the counter
cache and the counter cache line is marked as dirty. In this op-
eration, the ready bit of the counter write queue entry is always
set to 1. The following is an example that writes back the coun-
ters for the address 0x200 (Figure 11). Step 9 : the processor
issues a counter cache writeback() operation with the address
0x200. Step 10 : The counter cache looks up the requested
counter cache line and finds that it is dirty. As each counter
cache entry has eight counters, this operation writes back all
of them. Step 11 : The encryption engine inserts the counter
cache line to the counter write queue.

Steps During a System Failure. Step 12 : When a failure
occurs, the ADR support gets triggered. Both the counter and
data write queues start draining the pending write entries. Step
13 : Both write queues check the ready bit and only drain the
ready entries, making sure that the data and counter in memory
are always in sync.

6. Evaluation
In this section, we first describe the evaluation methodology
and provide a short description of the evaluated designs, and
present detailed evaluation results of each design.

6.1. Methodology
We model the hardware design described in Section 5 in the
cycle-accurate simulator Gem5 [4]. The simulated system con-
sists of x86 out-of-order processors, and an 8GB phase change
memory (PCM) [29, 57] with a DDR3 interface (Table 2). Ta-
ble 2 lists the system parameters used in our evaluation. The
counter cache in our implementation is 1MB, 16-way set as-
sociative. As each counter is 8B, a 1MB counter cache can
store 128K counters. However, we show results with different
sizes of counter cache in Section 6.3.4. The following are the
evaluated designs:
• No-encryption design. An NVMM system without any

encryption.
• Ideal design. An encrypted and crash consistent NVMM

system using the counter-mode encryption technique but
without any counter-atomicity overhead.



Processor Out-of-Order Cores, 4.0GHz
L1 D/I cache 64KB/32KB per core (private), 8-way
L2 cache 2MB per core (shared), 8-way
Counter cache 1MB per core (shared), 16-way
Memory Data read/write queue: 32/64 entries
controller Counter write queue: 16 entries
Memory 8GB PCM, 533MHz [27],

tRCD/tCL/tCWD/tFAW /tWT R/tWR
= 48/15/13/50/7.5/300ns [57]

En/decryption 40ns latency [47]

Table 2: System configuration. Tests are single-thread and single-
core unless explicitly mentioned.

• Co-located data and counter design (Co-located). An
encrypted and crash consistent NVMM system using a 72-
bit memory bus, where the counter used for encryption is
co-located with the corresponding data within each cache
line (Section 3.2.1).

• Co-located data and counter with a separate counter
cache design (Co-located w/ C-Cache). Similar to the
prior design with a wider memory bus (Co-located), but
the counters are separately buffered in the counter cache
and written back to NVMM using one access co-locating
both the data and counter (Section 3.2.1). Note that these
two designs require adding extra pins in the memory bus,
which is expensive.

• Full counter-atomicity design (FCA). An encrypted and
crash consistent NVMM system with the existing memory
bus, where counter-atomicity is enforced for every write
operation using our proposed hardware mechanism in the
memory controller (Section 3.2.2).

• Selective counter-atomicity design (SCA). Similar to
the previous design (FCA). However, writes are counter-
atomic only when necessary (Section 4).

Next, we describe the implement details of Intel’s persistency
support in our simulation environment. The implementation
requires two supports. (i) Hardware support for the clwb in-
struction that writes back cache lines. (ii) Hardware support
for sfence that ensures that any store instruction preceding
the sfence instruction in the program order completes be-
fore any store instruction that comes after the fence. First, we
model the clwb instruction in the simulator by writing back
the user-specified cache lines to NVMM without invalidating
them. Second, we implement the support for sfence by en-
suring that all outstanding clwb instructions are completed
before an sfence instruction can retire. We instrument our
workloads with clwb and sfence instructions in the appro-
priate places.

6.2. Workloads

We evaluate five NVM workloads that manipulate different
persistent data structures. Our evaluated workloads are simi-
lar to the ones used in prior works on persistent memory sys-
tems [11, 25, 27, 39].

• Array Swap. Swaps random items in a persistent array.
• Queue. Randomly en/dequeues items to/from a persistent

queue.

• Hash Table. Inserts random values to a persistent hash
table.

• B-Tree. Inserts random values into a persistent B-tree.
• Red-Black Tree. Inserts random values into a persistent

red-black tree.

6.3. Results

We first evaluate the impact of different designs (listed in Sec-
tion 6.1) on performance and throughput. Then we compare the
write traffic in these designs. Last, we evaluate the sensitivity
of the results when we vary different parameters.
6.3.1. Single-Core Performance. In this experiment, we com-
pare the performance improvement of different designs. Fig-
ure 12 demonstrates the runtime of different design point nor-
malized to the no-encryption design. The observations are
as follows. First, the selective counter-atomicity design im-
proves performance on average by 6.3% over the full counter-
atomicity design, and is only 11.7% slower than the no-
encryption design (due to the benefit from reordering and
buffering of writes). Second, the co-located design without any
counter cache significantly slows down the performance, on
average 81.1% slower than the selective counter-atomicity de-
sign (due to the serialized read and decryption). The co-located
design with a counter cache is slightly faster than the selec-
tive counter-atomicity design (0.7% faster), and only degrades
the performance on average by 10.9% compared to the no-
encryption design. However, co-locating the data and counter
is impractical due to invasive changes in the memory subsys-
tem. We conclude that using selective counter-atomicity is an
efficient and practical design that guarantees crash consistency
of an encrypted NVMM system.

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Array Queue Hash B-Tree RB-Tree Average

N
o

rm
a

li
ze

d

R
u

n
ti

m
e

SCA FCA Co-located Co-located w/ C-Cache

Figure 12: Performance comparison of different design points.
The runtime is normalized to the no-encryption design (lower is
better).

6.3.2. Multi-Core Performance. This experiment evaluates
different design points in a multi-core system, where each
thread performs the same operations on different cores. Fig-
ure 13 demonstrates the throughput of different designs. For
each workload, the x-axis shows the number of cores, and
the y-axis shows the throughput (number of transactions per
second) normalized to the single-core no-encryption design.
We make the following observations. First, the throughput
of the selective counter-atomicity design is very close to that
of the ideal design and is significantly better than the full
counter-atomicity and the co-located design. As the number of
cores increases, the benefit of selective counter-atomicity over
full counter-atomicity also increases. In a 1/2/4/8-core sys-
tem, selective counter-atomicity improves performance on av-
erage by 6.3/11.5/21.8/40.3% over full counter-atomicity. On
the other hand, the throughput of selective counter-atomicity
comes within 4.7% of the ideal design in all system configura-



tions. Therefore, we conclude that selective counter-atomicity
is highly scalable compared to other designs. Second, the co-
located design with a counter cache has similar performance
as the selective counter-atomicity design, as they use the same
counter cache. However, it performs better in some workloads
in four and eight core configurations because the co-located de-
signs use a wider memory bus (72 bits instead of 64 bits) and
faces less congestion on the memory bus. Third, we notice that
two workloads (Queue and RB-Tree) exhibit relatively poor
scalability with selective counter-atomicity. We find that there
is a high fraction of counter-atomic writes in their data struc-
tures, leading to contention in the memory controller. We con-
clude that selective counter-atomicity ensures scalability with-
out changing the memory interface.

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 80

1

2

3

4

5

N
o
rm

a
li

ze
d

 #
T

ra
n

sa
c
ti

o
n

s/
se

c

Array Queue Hash B-Tree RB-Tree

NoEncryption

Ideal

SCA
FCA

Co-located
Co-located w/ C-Cache

Figure 13: Throughput of multithreaded workloads, normalized
to the single-core no-encryption design (higher is better).

6.3.3. Write Traffic. Figure 14 shows the write traffic to the
NVMM normalized to the no-encryption design. We first ob-
serve that selective counter-atomicity on average reduces the
write traffic by 8.1% compared to the full counter-atomicity
design. This is because selective counter-atomicity buffers
and coalesces the counter updates and writebacks at the end
of a transaction, therefore, reduces the counter write traffic to
NVMM. Second, the write traffic in designs that co-locate data
and counters are similar as they enforce counter write back to-
gether with every data write to memory. The selective counter-
atomicity design reduces the write traffic on average by 6.6%
compared to these two designs.

1.0

1.1

1.2

1.3

Array Queue Hash B-Tree RB-Tree Average

N
o
rm

a
li

ze
d

 

B
y
te

s 
W

ri
tt

en

SCA FCA Co-located Co-located w/ C-Cache

Figure 14: Write Traffic to NVMM normalized to the no-
encryption design (lower is better).

Reducing the write traffic not only provides better per-
formance, but also improves the lifetime of NVM. Selective
counter-atomicity can improve the NVMM lifetime by 6.6%
assuming a uniform wear-leveling technique [38] (an orthogo-
nal design consideration in the NVMM systems). The improve-
ment will be higher if we consider compressing the counters
using techniques proposed by some prior works [1, 36].
6.3.4. Sensitivity to Counter Cache Size. Figure 15 compares
the performance of the selective counter-atomicity design when
we vary the counter cache size from 128KB to 8MB and run
workloads with footprints ranging from 100MB to 1000MB.
Figure 15(a) and 15(b) show the average speedup and miss

rate with different counter cache sizes over the smallest 128KB
counter cache. We observe that as the size of the counter cache
increases, both the speedup and miss rate improve for all work-
loads. While increasing the footprint of the workload decreases
the benefit from a larger counter cache. For example, an 8MB
counter cache improves the performance by 9% over a 128KB
counter cache when the workloads have 100MB footprint. On
the other hand, the improvement is only 2.4% with 1000MB
workloads. Similarly, using an 8MB counter cache decreases
the miss rate by 23.3% with a 100MB workload, while the
miss rate decreases by 15.4% with a 1000MB workload. We
conclude that using a large counter cache lead to better perfor-
mance, but as the footprint of workload increases, the perfor-
mance becomes less sensitive to the counter cache size. In this
work, we evaluate a 1MB counter cache per core, similar to a
prior NVMM encryption work [3].

1.00

1.02

1.04

1.06

1.08

1.10

100MB 500MB 1000MBA
v

g
 S

p
ee

d
u

p
 o

v
er

 

1
2

8
K

B
 C

o
u

n
te

r 
C

a
ch

e
Workload Footprint

(a)

0.0

0.1

0.2

0.3

0.4

100MB 500MB 1000MBA
v
g
 C

o
u

n
te

r 
C

a
ch

e 

M
is

s 
R

a
te

Workload Footprint

(b)

Figure 15: Evaluating SCA with different sizes of counter cache.
(a) Average speedup over a 128KB counter cache (higher is bet-
ter). (b) Average counter cache miss rate (lower is better).

6.3.5. Sensitivity to Transaction Size. In this experiment, we
evaluate the overhead of selective counter-atomicity with vari-
able transaction size. Figure 16 compares the performance of
selective counter-atomicity when varying the transaction size
from 64B to 4KB. The x-axis shows the number of cache lines
committed at each transaction. The y-axis shows the runtime
normalized to the corresponding ideal design that do not en-
force counter-atomicity. We observe that when the transaction
size is small, the overhead of selective counter-atomicity is on
average 7.5%. The overhead decreases as the size of trans-
action increases, and becomes less than 1% in all cases when
processing transactions with a size similar to a page (4KB).
Specifically, the overhead becomes as low as 0.1% for the B-
Tree. As the size of the transaction increases, the fraction of
counter-atomic write gets smaller, which amortizes the over-
head of counter-atomicity. We conclude that the overhead of
selective counter-atomicity will be negligible in NVMM appli-
cations that manipulate a large dataset within a transaction.

1 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64

Number of Cache Lines (64B per cache line)

1.00
1.02
1.04
1.06
1.08
1.10
1.12

N
o
rm

a
li

ze
d

 R
u

n
ti

m
e

Array Queue Hash B-Tree RB-Tree

Figure 16: The runtime of SCA with different sizes of transaction,
normalized to the ideal design (lower is better).

6.3.6. Sensitivity to NVM latency. In this experiment, we
compare the performance of selective counter-atomicity with



the design that co-locates both the counter and data (Sec-
tion 3.2.1) with varying NVM latency (Figure 17) to under-
stand the performance sensitivity of selective counter-atomicity
to different NVM technologies. First, we keep the write la-
tency fixed (same as the PCM latency) and vary the read la-
tency from 10× slower to 4× faster (similar to the DRAM
latency). Then we keep the read latency fixed and vary the
write latency in a similar way. We have the following con-
clusions from the results. First, Figure 17(a) shows that as
read latency decreases, selective counter-atomicity is on aver-
age 29.3% to 75.6% faster than the co-located design. This
is due to the fact that the serialized decryption overhead in
the co-located design becomes more prominent with a lower
read latency and therefore, by parallelizing the memory read
access and the decryption process, selective counter-atomicity
provides better performance. Second, Figure 17(b) shows that
selective counter-atomicity is on average 38.9% to 74% faster
than the co-located design when we decrease the write latency.
The reason is that the performance of the co-located design is
not very sensitive to the write latency, as writes are usually not
on the critical path and it uses a wider bus to writeback data
and counter atomically. However, selective counter-atomicity
needs to writeback the counters through the same bus as data,
and therefore, lowering the write latency provides a significant
benefit by reducing the bandwidth contention between data and
counters. Third, selective counter-atomicity provides a signif-
icant performance benefit (29.3%/38.9% for read/write) even
when the NVM speed is 10× slower than the PCM. It demon-
strates that selective counter-atomicity is effective, even when
the write latency is very high. We believe that future systems
will optimize NVM for lower latency and higher throughput,
hereby adopting selective counter-atomicity will lead to better
performance.

1.00

1.20

1.40

1.60

1.80

2.00

1
0
x
 s

lo
w

er

5
x
 s

lo
w

er

3
x
 s

lo
w

er

P
C

M

2
x
 f

a
st

er

4
x
 f

a
st

er
 

(i
d

ea
l)

A
v
er

a
g
e 

S
p

ee
d

u
p

 o
f 

S
C

A
 o

v
er

 C
o

-l
o
ca

te
d

 

(a) Read Latency

1.00

1.20

1.40

1.60

1.80

2.00

1
0
x
 s

lo
w

er

5
x
 s

lo
w

er

3
x
 s

lo
w

er

P
C

M

2
x
 f

a
st

er

4
x
 f

a
st

er
 

(i
d

ea
l)

A
v
er

a
g
e 

S
p

ee
d

u
p

 o
f 

S
C

A
 o

v
er

 C
o

-l
o
ca

te
d

 

(b) Write Latency

Figure 17: Varying (a) read latency, and (b) write latency.

6.3.7. Overhead Analysis. Finally, we analyze the over-
head from the additional structures used to provide selective
counter-atomicity. Similar to the prior hardware memory en-
cryption techniques, we use a counter cache and an encryp-
tion engine [3, 47, 59]. The size of our counter cache is 1MB
per core, similar to the one employed by Awad et al. [3]. Our
proposed design, selective counter-atomicity, requires only an
additional 16-entry (1kB in size) counter write queue at the
memory controller.

7. Discussion
This paper targets a non-volatile memory that has similar
read latency and slower write latency compared to DRAM, as
adopted in prior work [2, 3, 5, 6, 11, 13, 17, 24, 25, 26, 27,

29, 30, 34, 37, 45, 53, 55, 57, 65]. The true potential of a
persistent memory can be exploited when the NVM is on the
memory bus with a low access latency. In these cases, the en-
cryption latency (40 ns) becomes a significant bottleneck in
memory read accesses and therefore, it is essential to optimize
this overhead by parallelizing read and decryption with cached
counters [47, 61]. However, the commodity NVM chips are
yet to become commercialized in a wide scale and the current
NVM products still place NVM over the PCIe bus with a la-
tency close to high-end SSDs [16, 18, 42, 49, 50]. We do not
evaluate these systems as the encryption latency is small com-
pared to the overall access latency. We believe that the future
systems will perfect the NVM technologies over time and har-
ness its true potential by placing NVM on the memory bus.
Our proposed technique to optimize counter-atomicity would
be highly valuable in those systems.

8. Related Work
To the best of our knowledge, this is the first work to study
crash consistency in the encrypted NVMM systems. In this sec-
tion, we discuss relevant studies on NVM encryption and crash
consistency. We classify the related works into five broad cate-
gories.

NVM Encryption. Memory encryption has been a research
area for decades [44, 47, 48, 60]. Recent studies on NVM
encryption focus on providing faster and efficient encryption
techniques [3, 8, 61]. DEUCE reduces the write traffic using a
dual-counter encryption mechanism to improve the lifespan of
the encrypted NVMs [61]. Another recent work, Silent Shred-
der, proposes to eliminate writes when writes are just zeroing
out physical pages to achieve better power consumption and
performance [3]. i-NVMM provides an encryption technique
for NVM that leaves hot data unencrypted until a power fail-
ure is detected such that it reduces the en/decryption overhead
during the normal execution time [8]. These proposals do not
consider crash consistency in encrypted NVMs and therefore,
are orthogonal to this paper. Counter-atomicity has to be ap-
plied on top of these efficient encryption mechanisms in order
to guarantee crash consistency in the encrypted NVMM sys-
tems.

Memory Persistency. The memory persistency models pre-
scribe the order of writes to NVMM to ensure the recoverabil-
ity of in-memory persistent data in a consistent state. Pelly et
al. propose the notion of persistency [37], and later works pro-
pose different relaxed persistency models to allow higher con-
currency in memory writes [27, 34]. Recently, Intel extended
its ISA to support persistency and released an NVM library
to manipulate the low-level persistency support [19, 20]. Our
proposed counter-atomicity is orthogonal to any memory per-
sistency model. It does not enforce the ordering of writes to
persistent memory, but only enforces that the data and counter
of the same write request are persisted at the same time. Under
this assumption, crash consistent programming models can be
extended to the encrypted NVM and counter-atomicity can be
applied on top of any persistency model to ensure consistent
data recovery across system failures.

Software-Based Crash Consistency. NV-Heaps [11],
Mnemosyne [53], NVML [20], DudeTM [30], LSNVMM [17]



and REWIND [5] provide various types of transactional inter-
faces for NVMM to ease the burden of managing persistent
data in a crash consistent manner. BPFS [12], SCMFS [56],
PMFS [15], Aerie [52] and Mojim [64] provide crash consis-
tent file systems to leverage the performance benefit of NVMs
to store persistent data. All these techniques will have to adopt
counter-atomicity to extend to an encrypted NVMM system.

Hardware-Assisted Transaction. ThyNVM [39] and
ATOM [24] provide hardware-based transactional interfaces
for NVMM, without relying on clwb or sfence instructions
to maintain the correct ordering of writes. Instead, they adopt
mechanisms like logging and checkpointing in the hardware.
Some prior studies also propose to use non-volatile caches
(NV-cache) to solve crash consistency issues (e.g., Kiln [65]).
All these techniques also need to follow counter-atomicity to
provide crash consistency in an encrypted NVM.

Battery-Backed NVMM Systems. Backing up the entire
memory after a power failure can ensure crash consistency in
an NVMM system. For example, whole system persistence
(WSP) proposes to use residual energy to make sure that the
volatile data is written back to NVMM after a power fail-
ure [35]. i-NVMM also relies on a battery to encrypt and per-
sist a fraction of volatile data at a power failure [8]. Counter-
atomicity is not required in these techniques as the entire sys-
tem is backed up. However, our mechanism does not need a
battery to backup the entire system. Our solution extends the
ADR to cover the counter write queue, such that both the data
and counter write queues drain after a failure. As the size of the
write queue is small, our solution is adaptable to other systems.

9. Conclusion

This is the first work that introduces counter-atomicity, a
requirement that guarantees the recovery of encrypted in-
memory persistent data in a consistent state across system fail-
ures. Counter-atomicity ensures that both data and the associ-
ated counter values that are required for correct decryption are
persisted in memory atomically. Enforcing counter-atomicity
for all writes to NVMM results in a significant performance
degradation. Our selective counter-atomicity approach takes
advantage of the writes that do not immediately affect the con-
sistent recoverable states and allows reordering and caching of
the counter and data writes to reduce the performance over-
head. We provide simple primitives to let the programmers
selectively enforce counter-atomicity in the persistent applica-
tions and propose a low-overhead hardware design to enforce
counter-atomicity in an encrypted and crash consistent NVMM
system. We believe that our work provides a holistic system
support for both data persistence and security, paving the path
for a wide-spread adoption of NVMM systems.

10. Acknowledgements

We would like to thank the reviewers, Marzieh Lenjani and
Yizhou Wei for their valuable feedback. This work was sup-
ported by the National Science Foundation under the award
1566483.

References

[1] A. R. Alameldeen and D. A. Wood. Adaptive cache compression for
high-performance processors. In ISCA, 2004.

[2] J. Arulraj, A. Pavlo, and S. R. Dulloor. Let’s talk about storage & recov-
ery methods for non-volatile memory database systems. In SIGMOD,
2015.

[3] A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne. Silent
Shredder: Zero-cost shredding for secure non-volatile main memory con-
trollers. In ASPLOS, 2016.

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The Gem5 simulator.
ACM SIGARCH Computer Architecture News, 39(2), 2011.

[5] A. Chatzistergiou, M. Cintra, and S. D. Viglas. REWIND: Recovery
write-ahead system for in-memory non-volatile data-structures. PVLDB,
8(5), 2015.

[6] G. Chen, L. Zhang, R. Budhiraja, X. Shen, and Y. Wu. Efficient support
of position independence on non-volatile memory. In MICRO, 2017.

[7] S. Chen and Q. Jin. Persistent B+-Trees in non-volatile main memory. In
VLDB, 2015.

[8] S. Chhabra and Y. Solihin. i-NVMM: A secure non-volatile main mem-
ory system with incremental encryption. In ISCA, 2011.

[9] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Optimistic crash consistency. In SOSP, 2013.

[10] J. Coburn, T. Bunker, M. Schwarz, R. Gupta, and S. Swanson. From
ARIES to MARS: Transaction support for next-generation, solid-state
drives. In SOSP, 2013.

[11] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson. NV-Heaps: Making persistent objects fast and safe with
next-generation, non-volatile memories. In ASPLOS, 2011.

[12] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee. Better I/O through byte-addressable, persistent memory. In
SOSP, 2009.

[13] Z. Deng, L. Zhang, N. Mishra, H. Hoffmann, and F. T. Chong. Mem-
ory cocktail therapy: A general learning-based framework to optimize
dynamic tradeoffs in NVMs. In MICRO, 2017.

[14] W. Diffie and M. Hellman. Privacy and authentication: An introduction
to cryptography. Proceedings of the IEEE, 67(3), 1979.

[15] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson. System software for persistent memory.
In EuroSys, 2014.

[16] Everspin Technologies. Storage solutions achieve greater performance
with MRAM. https://www.everspin.com.

[17] Q. Hu, J. Ren, A. Badam, J. Shu, and T. Moscibroda. Log-structured
non-volatile main memory. In ATC, 2017.

[18] Intel. Intel Optane SSD DC P4800X series. https:
//www.intel.com/content/www/us/en/products/
memory-storage/solid-state-drives/data-center-
ssds/optane-dc-p4800x-series.html.

[19] Intel Corporation. Intel architecture instruction set extensions
programming reference (319433-029 April 2017). https:
//software.intel.com/sites/default/files/managed/
c5/15/architecture-instruction-set-extensions-
programming-reference.pdf.

[20] Intel Corporation. Persistent memory programming. http://
pmem.io/.

[21] Intel Corporation. Platform brief Intel Xeon processor c5500/c3500 se-
ries and Intel 3420 chipset. https://www.intel.com/content/
www/us/en/intelligent-systems/picket-post/
embedded-intel-xeon-c5500-processor-series-
with-intel-3420-chipset.html.

[22] Intel Corporation. Revolutionary memory technology. http:
//www.intel.com/content/www/us/en/architecture-
and-technology/non-volatile-memory.html.

[23] ITRS. International technology roadmap for semiconduc-
tors: 2005 edition, assembly and packaging. https:
//www.semiconductors.org/clientuploads/
Research Technology/ITRS/2005/1 Executive%
20Summary.pdf, 2005.

[24] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra. ATOM: Atomic durabil-
ity in non-volatile memory through hardware logging. In HPCA, 2017.

https://www.everspin.com
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series.html
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
http://pmem.io/
http://pmem.io/
https://www.intel.com/content/www/us/en/intelligent-systems/picket-post/embedded-intel-xeon-c5500-processor-series-with-intel-3420-chipset.html
https://www.intel.com/content/www/us/en/intelligent-systems/picket-post/embedded-intel-xeon-c5500-processor-series-with-intel-3420-chipset.html
https://www.intel.com/content/www/us/en/intelligent-systems/picket-post/embedded-intel-xeon-c5500-processor-series-with-intel-3420-chipset.html
https://www.intel.com/content/www/us/en/intelligent-systems/picket-post/embedded-intel-xeon-c5500-processor-series-with-intel-3420-chipset.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
https://www.semiconductors.org/clientuploads/Research_Technology/ITRS/2005/1_Executive%20Summary.pdf
https://www.semiconductors.org/clientuploads/Research_Technology/ITRS/2005/1_Executive%20Summary.pdf
https://www.semiconductors.org/clientuploads/Research_Technology/ITRS/2005/1_Executive%20Summary.pdf
https://www.semiconductors.org/clientuploads/Research_Technology/ITRS/2005/1_Executive%20Summary.pdf


[25] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch. Language-level persistency. In
ISCA, 2017.

[26] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch. High-
performance transactions for persistent memories. In ASPLOS, 2016.

[27] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M. Chen,
and T. F. Wenisch. Delegated persist ordering. In MICRO, 2016.

[28] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. Eval-
uating STT-RAM as an energy-efficient main memory alternative. In
ISPASS, 2013.

[29] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase change
memory as a scalable DRAM alternative. In ISCA, 2009.

[30] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, and J. Ren. DudeTM:
Building durable transactions with decoupling for persistent memory. In
ASPLOS, 2017.

[31] K. Ma, X. Li, J. Li, Y. Liu, Y. Xie, J. Sampson, M. T. Kandemir, and
V. Narayanan. Incidental computing on IoT nonvolatile processors. In
MICRO, 2017.

[32] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES:
A transaction recovery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging. ACM Transactions on
Database Systems, 17(1), 1992.

[33] D. Mulnix. Intel Xeon Processor D product family technical overview.
https://software.intel.com/en-us/articles/intel-
xeon-processor-d-product-family-technical-
overview.

[34] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton. An
analysis of persistent memory use with WHISPER. In ASPLOS, 2017.

[35] D. Narayanan and O. Hodson. Whole-system persistence. In ASPLOS,
2012.

[36] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry. Base-delta-immediate compression: Practical data
compression for on-chip caches. In PACT, 2012.

[37] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persistency. In ISCA,
2014.

[38] M. K. Qureshi, M. Franchescini, V. Srinivasan, L. Lastras, B. Abali, and
J. Karidis. Enhancing lifetime and security of PCM-based main memory
with start-gap wear leveling. In MICRO, 2009.

[39] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu. ThyNVM: En-
abling software-transparent crash consistency in persistent memory sys-
tems. In MICRO, 2015.

[40] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin.
Scaling the bandwidth wall: Challenges in and avenues for CMP scaling.
In ISCA, 2009.

[41] A. M. Rudoff. Deprecating the pcommit instruction. https:
//software.intel.com/en-us/blogs/2016/09/12/
deprecate-pcommit-instruction, 2016.

[42] A. Sainio. NVDIMM - Changes are here so what’s next?
https://www.snia.org/sites/default/files/SSSI/
NVDIMM%20-%20Changes%20are%20Here%20So%20What%
27s%20Next%20-%20final.pdf, 2016.

[43] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker, A. De, Y. Jin, Y. Liu,
and S. Swanson. Willow: A user-programmable SSD. In OSDI, 2014.

[44] W. Shi, H.-H. S. Lee, M. Ghosh, C. Lu, and A. Boldyreva. High effi-
ciency counter mode security architecture via prediction and precompu-
tation. In ISCA, 2005.

[45] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin. Proteus: A flexible
and fast software supported hardware logging approach for NVM. In
MICRO, 2017.

[46] Storage Networking Industry Initiative (SNIA). NVDIMM messaging
and FAQ. https://www.snia.org/sites/default/files/
NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.pdf.

[47] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. Efficient
memory integrity verification and encryption for secure processors. In
MICRO, 2003.

[48] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas. Design and im-
plementation of the AEGIS single-chip secure processor using physical
random functions. In ISCA, 2005.

[49] B. Tallis. The Intel Optane SSD DC P4800X (375GB) review: Testing
3D XPoint performance. https://www.anandtech.com/show/
11209/intel-optane-ssd-dc-p4800x-review-a-deep-
dive-into-3d-xpoint-enterprise-performance, 2017.

[50] G. M. Ung. Optane memory review: Why you may want Intel’s
futuristic cache in your PC. https://www.pcworld.com/
article/3191706/storage/optane-memory-review-
why-you-may-want-intels-futuristic-cache-in-
your-pc.html, 2017.

[51] O. Villa, D. R. Johnson, M. Oconnor, E. Bolotin, D. Nellans, J. Luitjens,
N. Sakharnykh, P. Wang, P. Micikevicius, A. Scudiero, S. W. Keckler,
and W. J. Dally. Scaling the power wall: A path to exascale. In SC, 2014.

[52] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, and
M. M. Swift. Aerie: Flexible file-system interfaces to storage-class mem-
ory. In EuroSys, 2014.

[53] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight persis-
tent memeory. In ASPLOS, 2011.

[54] T. Wang and R. Johnson. Scalable logging through emerging non-volatile
memory. In VLDB, 2014.

[55] T. Wang, S. Sambasivam, Y. Solihin, and J. Tuck. Hardware supported
persistent object address translation. In MICRO, 2017.

[56] X. Wu and A. L. N. Reddy. SCMFS: A file system for storage class
memory. In SC, 2011.

[57] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu,
and Y. Xie. Overcoming the challenges of crossbar resistive memory
architectures. In HPCA, 2015.

[58] J. Xu and S. Swanson. NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories. In FAST, 2016.

[59] C. Yan, B. Rogers, D. Englender, Y. Solihin, and M. Prvulovic. Improv-
ing cost, performance, and security of memory encryption and authenti-
cation. In ISCA, 2006.

[60] J. Yang, Y. Zhang, and L. Gao. Fast secure processor for inhibiting soft-
ware piracy and tampering. In MICRO, 2003.

[61] V. Young, P. J. Nair, and M. K. Qureshi. DEUCE: Write-efficient encryp-
tion for non-volatile memories. In ASPLOS, 2015.

[62] J. Zhan, O. Kayiran, G. H. Loh, C. R. Das, and Y. Xie. OSCAR: Or-
chestrating STT-RAM cache traffic for heterogeneous CPU-GPU archi-
tectures. In MICRO, 2016.

[63] Y. Zhang and S. Swanson. A study of application performance with non-
volatile main memory. In MSST, 2015.

[64] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson. Mojim: A reliable
and highly-available non-volatile memory system. In ASPLOS, 2015.

[65] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi. Kiln: Closing the
performance gap between systems with and without persistence support.
In MICRO, 2013.

https://software.intel.com/en-us/articles/intel-xeon-processor-d-product-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-d-product-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-d-product-family-technical-overview
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://www.snia.org/sites/default/files/SSSI/NVDIMM%20-%20Changes%20are%20Here%20So%20What%27s%20Next%20-%20final.pdf
https://www.snia.org/sites/default/files/SSSI/NVDIMM%20-%20Changes%20are%20Here%20So%20What%27s%20Next%20-%20final.pdf
https://www.snia.org/sites/default/files/SSSI/NVDIMM%20-%20Changes%20are%20Here%20So%20What%27s%20Next%20-%20final.pdf
https://www.snia.org/sites/default/files/NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.pdf
https://www.snia.org/sites/default/files/NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.pdf
https://www.anandtech.com/show/11209/intel-optane-ssd-dc-p4800x-review-a-deep-dive-into-3d-xpoint-enterprise-performance
https://www.anandtech.com/show/11209/intel-optane-ssd-dc-p4800x-review-a-deep-dive-into-3d-xpoint-enterprise-performance
https://www.anandtech.com/show/11209/intel-optane-ssd-dc-p4800x-review-a-deep-dive-into-3d-xpoint-enterprise-performance
https://www.pcworld.com/article/3191706/storage/optane-memory-review-why-you-may-want-intels-futuristic-cache-in-your-pc.html
https://www.pcworld.com/article/3191706/storage/optane-memory-review-why-you-may-want-intels-futuristic-cache-in-your-pc.html
https://www.pcworld.com/article/3191706/storage/optane-memory-review-why-you-may-want-intels-futuristic-cache-in-your-pc.html
https://www.pcworld.com/article/3191706/storage/optane-memory-review-why-you-may-want-intels-futuristic-cache-in-your-pc.html

	Introduction
	Background and Motivation
	Crash Consistency for NVMM Systems
	Crash Consistency for Encrypted NVMM Systems
	Encryption Technique.
	The Challenge.
	An Example.
	Our Goal.


	Counter-Atomicity
	Requirement
	Enforcing Counter-atomicity
	Challenge 1: How to ensure data and counter reach NVMM at the same time?
	Challenge 2: How to enforce counter-atomicity without changing the memory interface?


	Selective Counter-Atomicity
	The Overhead of Full Counter-Atomicity
	Not All Writes Equally Affect Recoverability
	Definition and Primitives

	Implementing Selective Counter-Atomicity
	System Integration
	Hardware Implementation
	Encryption and Decryption Support.
	Counter-Atomicity Support.


	Evaluation
	Methodology
	Workloads
	Results
	Single-Core Performance.
	Multi-Core Performance.
	Write Traffic.
	Sensitivity to Counter Cache Size.
	Sensitivity to Transaction Size.
	Sensitivity to NVM latency.
	Overhead Analysis.


	Discussion
	Related Work
	Conclusion
	Acknowledgements

