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Abstract—The Internet of Things (IoT) and mobile systems
nowadays are required to perform more intensive computation,
such as facial detection, image recognition and even remote
gaming, etc. Due to the limited computation performance
and power budget, it is sometimes impossible to perform
these workloads locally. As high-performance GPUs become
more common in the cloud, offloading the computation to the
cloud becomes a possible choice. However, due to the fact
that offloaded workloads from different devices (belonging to
different users) are being computed in the same cloud, security
concerns arise. Side channel attacks on GPU systems have
been widely studied, where the threat model is the attacker
and the victim are running on the same operating system.
Recently, major GPU vendors have provided hardware and
library support to virtualize GPUs for better isolation among
users. This work studies the side channel attacks from one
virtual machine to another where both share the same physical
GPU. We show that it is possible to infer other user’s activities
in this setup and can further steal others deep learning model.
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I. INTRODUCTION

The Internet of Things (IoT) and mobile devices are
used to perform heavier workloads nowadays, including
image recognition, facial detection, etc. As the need for
computation increases while the physical limitation, such as
thermal and size of these devices remains, it is impossible to
perform all the heavy workloads locally on these devices. A
possible solution is to offload these workloads to the cloud.
In this scenario, the offloaded tasks from different devices
that belong to different users can be executed on the same
machine.

Using the cloud to accelerate mobile and IoT devices can
certainly extend their capabilities, while concerns on security
arise due to the sharing of computation resources. Recent
works on side channel attacks, that leverages the information
from the system (e.g., cache, memory, etc.) other than the
vulnerabilities in the algorithm, have shown it is possible
to bypass the existing system-level protection and access
the private data of other processes [1, 4, 8, 29, 37, 38, 40].
The recent Spectre [15] and Meltdown [20] attacks have
demonstrated the feasibility of breaking the inter-process
isolation provided by the operating system. Their success
has inspired a variety of research on attacks and defenses on
the hardware [2, 5, 6, 14, 16, 32, 36], more specifically, side
channel attacks on the central processing unit (CPU). The
graphics processing unit (GPU), on the other hand, features
high-performance parallel computing. Conventional systems
use GPU as a dedicated accelerator for graphics processing,
such as video streaming and gaming. Modern workloads,

such as big data analytics, machine learning and artificial
intelligence, require highly parallel computing that the CPU
is not specialized at. As GPU features parallel computing,
modern systems typically use GPUs to accelerate these
workloads for better performance and efficiency. Therefore,
using the GPU to bypass the system isolation becomes a
possible approach. Moreover, in cloud computing scenarios,
GPUs can be shared among different clients [28] for tasks
such as 3D rendering, remote gaming [24, 27], and other
acceleration for computation [25, 28]. This resource sharing
on GPUs makes it possible for attackers to gain information
about other users on the cloud.

The execution model of GPU differs from that of CPU due
to its use cases and architectual design. First, GPU features
parallel computing and optimizes for throughput. A group of
GPU cores can execute hundreds of threads in parallel, where
cores running the same instructions can have divergent control
flows. To simplify the process of control flows on different
threads and improve parallelism, GPUs have execution mask
to individually disable some of the code when the branch
diverges on different threads. This way, each thread has the
same execution time, in spite of their differences in the control
flow. For the same reason of optimizing for parallelism and
throughput, GPU processors are simpler than those in CPUs,
which do not perform speculation. These characteristics make
many of the CPU side channel attacks ineffective to GPU.
However, there have been works that exploit side channels
that exist on GPUs [11, 12, 18, 23] and defend against GPU-
specific side channel attacks [13]. Second, a GPU typically
works as an external PCI-E device. Therefore, the program
does not directly execute on the GPU, instead, a runtime
system schedules and offload tasks (program kernels) to
the GPU device. This execution model makes the runtime
library a potential target for attackers. There have been recent
works that launch attacks to access private data of other GPU
processes, leveraging the vulnerabilities in GPU libraries and
runtime environments [19, 35, 41]. These attacks assume a
threat model where the attacker and the victim GPU processes
run on the same OS and share the entire GPU system stack,
including the GPU library and runtime system.

Recently, major GPU vendors have released GPUs that
support virtualization to better satisfy the demand for GPU in
cloud computing environments [10, 25, 39]. In a virtualized
GPU system, each virtual machine (VM) has an exclusive
virtualized GPU (vGPU) and thus having its own GPU library
and runtime system. This lower-level, virtualization-based
isolation makes cross-VM attacks on GPU more difficult in
the following two ways: First, virtualization provides stronger



isolation. Each VM has its own GPU system stack. Therefore,
the weakness in GPU library no longer exists. Second, GPU
hardware performance counters are (typically) not available
to VMs, therefore, attackers cannot easily launch a side
channel attack using these performance counters. Our goal is
to exploit the potential vulnerabilities in a virtualized GPU
environment.

To overcome the challenges in attacking virtualized GPUs,
we have the following key ideas: (1) We observe that even
though virtualization has isolated vGPUs, the contention
among GPU workloads still exists, as they share the same
physical GPU device. Therefore, we can launch probing GPU
kernels and measure their execution time as a replacement
for the GPU performance counters. The change of prober’s
execution time provides information about the workload
running on the victim VM. (2) The execution time, however,
is a low-resolution performance indicator. To overcome this
problem, we take an approach from a prior work [23] that
utilizes machine learning approaches to better identify the
victim’s GPU workload.

In this work, We use an Intel’s GPU (HD530) and
virtualization support (Intel GVT) as our platform, and test
our attacking method with three GPU activities and five deep
learning models. Applying the aforementioned key ideas, we
achieve an F1 Score of 0.95 when identifying the victim’s
activities, and a 100% accuracy in extracting the deep learning
models.

II. BACKGROUND AND MOTIVATION

A. GPU Architecture

GPU features high parallelism and high throughput, being
highly optimized for graphics and other parallel general
purpose computing tasks. Different from CPUs, a GPU
consists of a number of Graphical Processing Clusters (GPCs),
each of which includes a group of graphics units such as
raster engine and Streaming Multiprocessors (SMs). SMs are
all shared among the computational threads that are mapped
to it. These units are originally designed for accelerating
graphics and multimedia workloads, such as 3D rendering
and video streaming. Recently, as the need is growing for
workloads such as big data analytics, machine learning and
scientific computing, GPUs are also used to accelerate these
general purpose applications. There have been library and
languages, such as CUDA and OpenCL, to support this
general purpose computation on GPUs.

B. GPU Virtualization

Similar to CPUs, GPUs can also be virtualized to provide
an abstraction over the hardware to VM users. Typically,
there are two ways to divide the GPU resources: physical-
slice and time-slice [7]. The physical-slice method allocates
different VM separate computation units (GPU cores), while
the time-slice method allocates all GPU computation units to
one VM periodically. AMD takes the physical-slice approach,
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Figure 1. Threat Models. (a) The threat model in prior works: the victim
and attacker execute in the same OS. (b) The threat model in this work: the
victim and attacker reside in different VMs where each VM has its own
virtualized GPU.
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Figure 2. The system stack in (a) normal GPU systems, and (b) virtualized
GPU systems.

and Intel and Nvidia use time-slice. With GPU virtualization,
different virtual machines (VMs) have their own exclusive
virtualized GPU. Therefore, each VM has its own GPU
library. The only sharing resource is the physical GPU device.

III. SYSTEM OVERVIEW

This section gives an overview of our system, threat model
and attack approaches.

A. Threat Model

Prior works assume that the attacker and victim GPU
processes execute on the same machine, as shown in
Figure 1(a). In this project, we assume a different threat
model, that is the attacker and victim are on different virtual
machines. Virtual machines have their own GPU memory,
but still share the same GPU device with others, as shown
in Figure 1(b).

B. System Setup and Key Ideas

Figure 2 shows the system stack in the aforementioned
threat models. Figure 2(a) shows the system stack in prior
works where different GPU applications (App A and App B)
run on the same GPU runtime in the same OS and access
the same GPU device. Figure 2(b) shows the system stack in
this work. We assume that the host machine creates vGPUs
on top of the physical GPU device (e.g., using Intel GV-
T [10]). Then, different guest machines (VMs) use their own
vGPU. From the perspective of each VM, it has its “exclusive”
access to the GPU. Therefore, each VM has its own GPU
system stack, including the driver and runtime system. In our



Category GPU Workload Description
Baseline Idle Having Ubuntu desktop on, but no GPU load.

Entertainment Online video streaming Watch a 4K YouTube video.
OpenArena A game that runs on Linux.

Machine learning models
VGG-16 [33] Deep Neural Networks that run on an OpenCL-based

deep learning framework – clDNN [9].AlexNet [17]
GoogleLeNet-V1,V2,V4 [34]

Table I
GPU VICTIM WORKLOADS.

system setup, different GPU applications (App A and App
B) are isolated by the lower-level virtualization technology.
This isolation minimizes the resource sharing between the
attacker and victim, as compared to a scenario where the
attacker and victim run in the same OS, and share the same
GPU library and runtime system. Therefore, the two major
attacking methods no longer work:

Library-based Attacks. Different VMs have their own
exclusive vGPU device, and the upper-level GPU library
and runtime support. As a result, attacks based on flaws
in the GPU library and runtime does not work anymore –
the underlying virtualization has provided strong isolation
between different VMs.

Performance-counter-based Side Channel Attacks. As
directly stealing data from the victim via GPU library
and runtime is no longer a feasible solution, side channel
attack becomes an appealing choice. GPU-based side chan-
nel attacks require certain performance-related information,
e.g., memory size, computation unit utilization, etc. to
infer the details about the victim workload. A typical
approach is to read the GPU performance counters. However,
virtualization blocks the guest machine (VM) from accessing
these performance counters. Therefore, side channel attacks
require other indirect methods to infer the victim’s activities.

Given that fewer methods are feasible in this virtualized
scenario, the difficulty of launching GPU-based attacks
increases. Next, we present our key ideas that overcome
these difficulties.

Probing Program. Due to the unavailability of GPU
performance counters, we need a new method to monitor the
performance status of the victim VM. We observe that even
though virtualization has provided strong isolation between
VMs, the resource contention still exist. Therefore, programs
that utilize GPU on the victim VM can lead to a performance
impact on the attacker VM. To leverage this impact, we
run a probing program on the attacker side. In the system
we study, the proper program consists of a simple read-
compute-store pattern that can be contended with the victim
both in terms of memory and computation units. The more
contention the victim creates, the slower the prober executes.
Therefore, the execution time of the prober act as a low-
resolution “performance counter”. We discuss the details
about the prober in Section IV-A3.

Machine-learning-based Characterization. Given
performance-counter-like results, the next step is to

determine what GPU workload the victim is running.
However, due to the low resolution, i.e., the execution time
of the prober only approximately tells how much memory
and computation contention the victim causes, it is still hard
to directly tell what GPU workload the victim is running.
To improve the accuracy of identification, we take a similar
method as [23], that is to use machine-learning techniques
to extract richer features within the raw data (execution time
of prober). We detail our method in Section IV-A3, and
present our classification results in Section IV-B.

IV. EXPERIMENTATION

In this section, we present our real-system-based attack.
First, we describe the system setup, including the virtu-
alization method, the victim workload, and the attacker’s
probing program. Second, we detail our machine-learning-
based analysis that classifies the GPU workload running on
the victim VM.

A. Methodology

1) Virtualized System.: In this work, we use a system
based on Intel’s GPU and virtualization technologies. Table II
shows the system configuration. Our virtualization is based
on a KVM-accelerated QEMU, that uses the vGPU devices.
Note that due to the limitation of GPU memory, we can only
instantiate two vGPUs and run at a low display resolution
of 960×640. One VM acts as the victim that runs the GPU
workload, and the other VM runs the prober program. Next,
we describe the victim and the attacker in detail.

Hardware

CPU Host: Intel i7 6700, 8 logical cores
Guest: 2 logical cores

GPU Intel GT2 HD530

Memory Host: 48GB DDR4, 2133Mhz
Guest: 4GB

Display Host: 1920×1080
Guest: 960×640

Software
OS Host and guest: Ubuntu 16.04

Kernel Host: 4.17 (with Intel GVT support)
Guest: 4.15

QEMU 2.12.0 (with Intel GVT support)

Table II
SYSTEM CONFIGURATION.

2) Victim Programs.: We select a few common GPU
workloads, as listed in Table I. The baseline is an idle system
that has the Ubuntu desktop on, but does not actively use the
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Figure 3. Feature distribution visualization for side channel attack that infers the victim’s activity.

GPU. The second category of applications is for entertainment
purposes. We take 4K video streaming and the OpenArena
game as examples. The third category is main-stream deep
learning workloads. As NVIDIA recently announced their
partnership with ARM for accelerating deep learning on
IoT devices [26], we expect that deep learning will be a
common application in the cloud with vGPUs. We choose
five commonly used models: VGG-16 [33], AlexNet [17] and
three versions of GoogleLeNet [34]. These deep learning
models perform inference over the ILSVRC [31] images.
Note that the training procedure can also become a targeting
workload, however, due to the computation capability of
the Intel integrated GPU, we only consider the inference
workloads.

3) Attacker Approach.: To perform an attack on the victim
VM, the attacker needs to take two steps: (1) launch the
probing program, and (2) interpret the results from the prober
to classify the victim’s GPU workload. Note that we assume
the attacker has a brief knowledge about the victim’s GPU
workload, such as the commonly used deep learning models
that we have listed above.

Probing Program. The probing program consists of an
OpenCL kernel that runs on GPU, and a wrapper that offloads
this kernel repeatedly. The OpenCL kernel first accesses a
random location in a float32 array (the array is on GPU
memory), then calculates the square of the selected data value
in the array, and eventually writes back this new value to
the original location. This simple read-compute-write pattern
utilizes both the memory and computation units on the GPU
device, therefore any contention from the victim program can
change the execution time of this probing OpenCL kernel.
The wrapper program uses OpenCL Events (cl_event) to
measure the execution time of the OpenCL kernel.

Probing Result Interpretation. For each GPU workload,
we create a dataset of 1000 probing sequences, where each
sequence has 1000 probing data points (execution time of the

probing kernel). Then, we use machine learning approaches
to interpret these probing results, where we take 80% of the
sequences as the training data and the remaining 20% for
testing. As our probing results represent the activity over
time, we use the common pipeline of time-series analysis to
process the results: feature extraction, feature selection and
classification.

(1) Feature Extraction: We use the tsfresh package [3]
to extract the time-series-based features. In total, we extract
over 1200 features from the probing results, including the
most common features in time series classification such
as means, skewness and Kurtosis. We showcase some of
the features in Figure 3, where different workloads present
distinguishable features.

(2) Feature Selection: We use the univariate feature
selection method [21] to extract the features that are most
useful to classification. Univariate feature selection works by
selecting the best features based on univariate statistical tests.
It computes the scoring function (e.g., Chi-squared statistics
and mutual information) of each feature and discards the
less relevant ones with low scores. In our experiment, we
only keep 400 features after feature selection.

(3) Classification: We use different machine learning
models to learn the victim’s GPU workload based on the
features we extracted from the probing results. We use the
following models for classification: Random Forest (RF), K-
nearest Neighbors (KNN), Support Vector Machine (SVM),
Adaptive Boosting (AdaBoost), and Gaussian Naive Bayes
(NB).
B. Evaluation Results

We use precision, recall and F1 scores to evaluate the
classification results. We present the results using these
metrics in Table III and Table IV. Table III shows the results
of user (victim) activity classification, that includes the first
three activities in Table I. All classifiers indicate that we can
successfully infer the user activities. The optimal classifiers



Classifier Precision Recall F1 score
RF 0.96 0.95 0.95
KNN 0.82 0.82 0.82
SVM 0.95 0.95 0.95
AdaBoost 0.86 0.85 0.85
NB 0.74 0.71 0.69

Table III
RESULTS OF SIDE CHANNEL ATTACK ON USER’S ACTIVITIES.

Classifier Precision Recall F1 score
RF 1.00 1.00 1.00
KNN 1.00 1.00 1.00
AdaBoost 0.47 0.60 0.50
NB 0.92 0.90 0.90

Table IV
RESULTS OF SIDE CHANNEL ATTACK ON MODEL EXTRACTION.

for probing the victim’s activities are RF and SVM that could
achieve an F1 scores of 0.95.

We further demonstrate the model extraction performance
in Table IV, that includes the five deep learning models in
Table I. The results show that the attacker is also able to
infer which deep learning model the victim is running for
model inference with 100% accuracy when the attacker using
the RF and KNN classifier.

V. DEFENSE

Our attacks require that there exists a significant resource
contention between different vGPUs. During our experiment,
we find out that the attacker’s prober has a noticeable
slowdown due to the intensive deep learning workload
running on the victim VM. The performance impact finally
leads to information leakage. On the other hand, a successful
probing program needs to perform a specific pattern of work
– repeating a simple GPU kernel for example. This clear
pattern can also expose the attacker. To mitigate (in part) the
side channel across vGPUs, we have the following proposals.

Side-channel-aware Resource Scheduling. The GPU
virtualization support allocates resources to each vGPU
and schedules the tasks. Defending against side channel
attacks on vGPUs requires the scheduler to expose fewer
characteristics about the workload, such as memory and
computation intensity. When the GPU resource is sufficient,
it is possible to limit the maximum resource that one vGPU
can acquire. For example, in our experiments, GoogleLeNets
are much more intensive compared to other models. Limiting
the maximum resource for each vGPU can reduce the
difference in memory/computation intensity between different
workloads. This way, the variation of resource utilization
(due to workload’s characteristics) is lower, and therefore,
providing less information to the attacker.

Attacker Behavior Detection. The detection of an at-
tacker requires the hypervisor (e.g., KVM, Xen, etc) monitor
the GPU activities on each VM. Existing products or
proposals have considered CPU activities, but requires more
awareness on the GPU side. Once a potential attacker

has been detected, the hypervisor can either change the
scheduling mechanism or move the VM to another machine.

VI. RELATED WORKS

GPUs have been widely used for tasks beyond its original
multimedia tasks. As GPU computing is becoming more and
more general purpose, concerns on its security arise.

GPU Runtime Information Leakage. Recent works
demonstrate that the information leakage in GPUs can lead
to security issues [11, 19, 22, 23]. There are two major
categories of GPU-based attacks. The first type of attacks
leverages the design flaws of the GPU library, such as inappro-
priate data sharing, switching the processes without clearing
the buffer, etc. Yao et al. [41] discovers the vulnerabilities in
the WebGL library can lead to graphics memory leakage and
propose to use virtualized GPU platforms to mitigate this
leakage. Pietro et al. [30] showcases leakages in different
types of GPU memory, including shared memory, global
memory and registers, and successfully steal the SSL key
stored in the GPU. In a virtualized system, each VM has
its own GPU driver and runtime library. Therefore, it is
impossible to read data from the GPU runtime in other VMs.

GPU Side Channel Attacks. The second category of
attacks uses the side channel in the GPU device, such as
performance counters and cache, to infer information of other
GPU processes. Naghibijouybari et al. [23] demonstrate that
by leveraging the GPU performance counters, it is possible
to gain user information with an OpenGL-based spy process.
For example, the attacker can fingerprint the websites’ GPU
activity and infer the website the user is browsing. Using
a similar technique, the attacker can also estimate some of
the parameters, such as the number of neurons and the size
of input layers, of user’s neural network models. Jiang et
al. [11] conduct a timing attack on a CUDA-based Advanced
Encryption Standard (AES) implementation. Their key idea
is to capture the difference in timing between addresses
generated by different threads as they access GPU memory.
By observing the execution time of an encryption algorithm
on GPU, the attacker can infer the likely encryption key.
Luo et al. [22] demonstrate a power-based side channel
attack on AES encryption executing on a GPU. In virtualized
systems, performance-counter-based side channel attacks no
longer work as the VM does not have the privilege to access
performance counters. As a result, launching side channel
attacks to another VM is challenging.

VII. CONCLUSIONS

The integration of GPU in the cloud accelerates mobile
and IoT devices, while causing potential vulnerabilities due
to resource sharing. The GPU virtualization technologies
provide better isolation among vGPU users, making many
of the existing side channel attacks ineffective on vGPUs. In
this work, we demonstrate that it is still possible to launch
side channel attacks on vGPUs.
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