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Abstract
Persistent memory (PM) technologies, such as Intel’s Optane
memory, deliver high performance, byte-addressability, and
persistence, allowing programs to directly manipulate per-
sistent data in memory without any OS intermediaries. An
important requirement of these programs is that persistent
data must remain consistent across a failure, which we refer
to as the crash consistency guarantee.

However, maintaining crash consistency is not trivial. We
identify that a consistent recovery critically depends not only
on the execution before the failure, but also on the recovery
and resumption after failure. We refer to these stages as the
pre- and post-failure execution stages. In order to holistically
detect crash consistency bugs, we categorize the underlying
causes behind inconsistent recovery due to incorrect inter-
actions between the pre- and post-failure execution. First, a
program is not crash-consistent if the post-failure stage reads
from locations that are not guaranteed to be persisted in all
possible access interleavings during the pre-failure stage —
a type of programming error that leads to a race that we
refer to as a cross-failure race. Second, a program is not crash-
consistent if the post-failure stage reads persistent data that
has been left semantically inconsistent during the pre-failure
stage, such as a stale log or uncommitted data. We refer to
this type of bugs as a cross-failure semantic bug. Together,
they form the cross-failure bugs in PM programs. In this work,
we provide XFDetector, a tool that detects cross-failure bugs
by automatically injecting failures into the pre-failure ex-
ecution, and checking for cross-failure races and semantic
bugs in the post-failure continuation. XFDetector has de-
tected four new bugs in three pieces of PM software: one
of PMDK’s examples, a PM-optimized Redis database, and a
PMDK library function.
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1 Introduction
Persistent memory (PM) technologies feature high perfor-
mance, byte-addressability, and persistence. PM modules are
placed on the memory bus and accessed through a load/store
interface, thereby blurring the boundary between memory
and storage. As Intel has released Optane DC Persistent
Memory [21], this technology has finally become available
to the industry, researchers, and developers. The arrival of
PM has spurred the development of file systems [14, 33,
34, 44, 64, 68, 71, 72], databases [4, 25, 37, 49], key-value
stores [9, 69, 70], and custom programs that directly man-
age persistent data [8, 12, 20, 57, 73]. All of these software
systems are expected to recover to a consistent state and be
able to resume execution in the event of a failure (e.g., power
failure or system crash). We refer to the ability to restore to
a consistent state as the crash consistency guarantee.

Due to the volatile caching and reordering of writes within
the memory hierarchy, programs need to carefully manage
the order in which a write becomes persistent when imple-
menting a crash-consistent program. For example, in the
commonly used undo logging mechanism [11, 23, 31], a log
of data values must be written to PM before a corresponding
update happens. Therefore, PM systems have introduced
new instructions (e.g., CLWB and SFENCE from x86 [26], and
DC CVAP from ARM [3]) to enforce such an ordering, and
further provided higher-level abstractions (e.g., transactional
libraries [11, 23, 31, 65]) for better programmability. How-
ever, it is still not trivial to guarantee crash consistency,
as programmers need to have a good understanding of the
hardware primitives and/or the semantics of libraries.
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Recent works have implemented testing tools for PM pro-
grams and detected bugs due to misuse of low-level primi-
tives and libraries when the program is updating persistent
objects [22, 42]. Required by the crash consistency guarantee,
that is a program returns to a consistent state and resumes
the execution after a failure, a testing tool is expected to
detect inconsistencies during the entire procedure of execu-
tion, recovery, and resumption. As such, only testing the part
of the execution before a failure happens is insufficient. In
this work, we identify that a crash-consistent program must
ensure a correct interaction between the execution stage
before and after the failure. Therefore, a program first needs
to correctly implement certain crash consistency mecha-
nisms (e.g., undo/redo logging [5, 6, 10, 23, 28, 31, 65], check-
pointing [30, 60], or shadow paging [13, 56]) to ensure data
consistency before failure. And second, after failure, the as-
sociated recovery procedure must properly restore PM to
a consistent state. We refer to the stages before and after
the failure as the pre-failure and post-failure stages. The pre-
and post-failure stages are required to work collaboratively
to guarantee crash consistency. If the interaction between
the two stages is incorrect, the program might not recover
to a consistent state. In the previous undo logging example,
even if the program correctly maintains undo logs during
the pre-failure stage, the post-failure execution might still
read inconsistent data if the recovery procedure does not
correctly roll back incomplete updates according to the undo
logs. Hence, both the pre- and post-failure execution stages
are critical to the crash consistency guarantee. In this work,
we seek to test the crash consistency guarantee holistically,
considering both the pre- and post-failure execution stages.
In order to holistically detect crash consistency bugs, we

first need to precisely define the incorrect interactions be-
tween the pre- and post-failure execution stages. In this
work, we categorize such interactions into two classes: (1)
cross-failure race, and (2) cross-failure semantic bug. Next,
we explain both scenarios in detail.

The most common incorrect interaction is that the post-
failure executionmay read data that is not guaranteed to have
persisted in all possible interleavings during the pre-failure
stage. Analogous to data races in multithreaded programs,
the post-failure execution acts as a “thread” that executes
“concurrently” with the pre-failure execution. Without prop-
erly orchestrating the “concurrent execution” by enforcing
the persistence and the ordering of writes to PM, the post-
failure execution might read from locations that were not
persisted before the failure. We refer to this scenario as a
cross-failure race. However, not every cross-failure race leads
to a crash consistency issue. Instead, much like races on syn-
chronization primitives that are inherent, cross-failure races
are sometimes necessary to enable a correct recovery. For
example, suppose the validity of an undo log is indicated by
a valid bit. During the post-failure execution, the recovery
code must read this valid bit to check whether the undo log

needs to be applied to overwrite a potentially inconsistent lo-
cation. The pre-failure write that sets the valid bit inherently
races with the post-failure read, but the recovery outcome is
well defined for all possible scenarios of the race. We refer
to such intentional races as benign cross-failure races, as they
do not lead to crash consistency issues.
Even in the absence of cross-failure races, the program

can still be semantically incorrect and cause inconsistencies
across the failure. For example, under the checkpointing-
based recoverymechanism, the post-failure execution should
read only from data in themost recent committed checkpoint.
Data in earlier checkpoints have been persisted, and accesses
to it during recovery do not race, yet these data differ from
the latest checkpoint. As such, reading from older check-
points during the post-failure stage violates the semantics of
the crash consistency mechanism. Similar to the cross-failure
race, this buggy scenario can only be detected in the event
of a failure. However, the difference is a cross-failure race
returns a non-deterministic outcome but such a scenario is
always buggy if the program fails at a certain point. There-
fore, we refer to the second type of incorrect interaction as
a cross-failure semantic bug.

We collectively refer to these two classes of programming
errors as cross-failure bugs. In both cases, the program reads
from PM locations that are regarded as inconsistent, either
because the update to the location is not guaranteed to be
persisted before failure, or it is treated as invalid by the se-
mantics of the crash consistency mechanism. The goal of
this work is to build upon our definitions of the cross-failure
bugs to provide a tool that automatically detects these bugs
and validates a PM program’s crash consistency guarantee.
We propose XFDetector (Xross-Failure Detector) that detects
inconsistencies across both the pre- and post-failure stages.
At the high-level, XFDetector takes two steps in detection.
First, at runtime, XFDetector traces PM operations in both
the pre- and post-failure stages. Second, XFDetector replays
the two traces and updates a shadow PM to reflect the status
of each PM location based on the operations in the trace,
such as whether updates have been persisted and data is
semantically consistent. The status then enables the detec-
tion of cross-failure bugs. In order to generate both the pre-
and post-failure traces for testing, XFDetector atomically
injects failure points into the PM program. Based on our
observation that a program can only enter a consistent state
after an explicit writeback to PM (e.g., a CLWB followed by
an SFENCE), XFDetector only injects failures to such points
to reduce the number of post-failure executions.

The contributions of this work are the following:
• This work shows that the crash consistency guarantee
relies on the correct interaction between the pre- and
post-failure stage of a PM program.

• We categorize the incorrect cross-failure interactions into
two classes: (1) cross-failure race, where the post-failure



execution reads from non-persisted data, and (2) cross-
failure semantic bug, where the post-failure execution
reads from semantically inconsistent data.

• Based on the categorization and definition, we implement
XFDetector1, a tool that automatically injects failures into
programs, and detects cross-failure bugs by replaying
traces of the pre- and post-failure stages.

• XFDetector has detected four new bugs in three pieces of
PM software: one of PMDK’s examples, a PM-optimized
Redis [25] database, and a PMDK library function [23].

2 Background and Motivation
In this section, we first introduce programming for persistent
memory (PM) systems and its difficulties. Then, we discuss
the cause of inconsistencies across failure.

2.1 Programming for Persistent Memory is Hard
Persistent memory (PM) technologies, such as Intel’s Op-
tane DC Persistent Memory [21], allow programs to directly
manage persistent data in memory. Without the OS indirec-
tion, programs can fully leverage the high performance and
persistence of PM systems. On the other hand, the burden
of maintaining the consistency of data in PM lies on pro-
grams. We refer to the ability of recovering to a consistent
state after failure (e.g., power outage or system crash) as the
crash consistency guarantee. A crash-consistent program is
expected to recover from a failure and resumes its execu-
tion as if the failure has never happened. While, due to the
processor’s caching and buffering in the volatile memory
hierarchy and reordering of writes to memory, the order a
write becomes persistent can be different from the intended
program order. For simplicity, we refer to the act that a write
becomes persistent as a persist. To guarantee the persistence
and the ordering of writes, PM systems provide instructions,
such as CLWB and SFENCE from x86 [26], to ensure a write
to PM has been properly persisted and ordered with other
persists. We use a persist_barrier()to refer to a sequence
of “CLWB; SFENCE” that writes back a selected cache line and
orders it before future persists. Built upon these low-level
instructions, there are also high-level libraries, such as Intel’s
PMDK [23], that abstract away the low-level instructions
for better programmability. Both levels of support allow pro-
grams to enforce the persistence and the correct ordering of
writes to PM, and thereby, guarantee crash consistency.

However, it is not trivial to guarantee crash consistency,
as programmers need to have a good knowledge of the prim-
itives and/or PM libraries. Prior works have implemented
specialized testing tools for PM programs and found bugs due
to misuse of these hardware primitives and library functions
when the program performs updates to PM [22, 42]. How-
ever, only testing the normal execution stage is insufficient as

1XFDetector is available at https://xfdetector.persistentmemory.org.

crash consistency has two fundamental requirements: (1) the
program needs to correctly follow crash consistency mech-
anism to ensure data consistency before a failure happens,
and (2) the recovery code needs to correctly restore the PM
status back to a consistent state after a failure and resume
the previously preempted execution. For simplicity, we re-
fer to the phase before failure as the pre-failure stage, and
after failure as the post-failure stage. Next, we will show two
examples that fail to meet these requirements.

void recover_alt() {
 ... // Apply undo logs
 int count = 0;
 // Traverse list and get length
 node_t cur_node = list.head;
 for(; cur_node; count++)
  cur_node = cur_node->next;
 // Overwrite inconsistent length
 list.length = count;
}

void append(node_t* new_node) {
 TX_BEGIN {
  new_node->next = head;
  TX_ADD(list.head);
  head = new_node;
  list.length++;
 } TX_END
}

1
2
3
4
5
6
7
8

void recover() {
 ... // Apply undo logs
}

void pop() {
 TX_BEGIN {
  if (list.length) {
   TX_ADD(list.head);
   list.head = head->next;
   list.length--;
  }
 } TX_END 
}
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Read
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Correct Post-Failure

Figure 1. An example of an inconsistency in program’s
post-failure execution.

Example 1: Inconsistency in the post-failure execution.
Figure 1 shows a snippet of code that appends a new_node
to a persistent linked list. To guarantee crash consistency, it
wraps the updates in a transaction (indicated by TX_BEGIN
and TX_END). Within the transaction, it adds the current PM
object to an undo log with a TX_ADD() function (line 4), such
that if a failure happens in the middle of the transaction,
the recovery program can roll back the logs and restore to a
consistent state. However, the program does not add length
to the undo log. As a result, if a failure happens between line
6 and 7, it is unknown if the length of the linked list has
been persisted. Whether or not this inconsistent length can
lead to a bug depends on the post-failure execution.

In the naive implementation, the program executes the fol-
lowing steps after the failure: First, it executes the recover()
function (line 9) that rolls back the incomplete transaction
with undo logs. Second, it resumes the program’s normal
execution. Let’s assume the next operation on the linked
list is pop() (line 13-21), which removes the head node and
decrements its length. As the length was not added to the
transaction in the pre-failure execution, the resumption exe-
cution keeps using the inconsistent value (as indicated by the
red arrows). If the linked list was initially empty before call-
ing the append() function and the updated length (equals
to 1) happens to be persisted before the failure, the resump-
tion execution can even have a segmentation fault as the “if”
statement at line 15 becomes “true” and tries to remove a
node from the empty linked list.

https://xfdetector.persistentmemory.org


To recover the linked list to a consistent state without
requiring the logged length, recover_alt() traverses the
linked list and gets the number of nodes (line 26-28) after ap-
plying the undo logs. Then, it overwrites the lengthwith the
correct value (line 30), making the variable length consis-
tent. During traversal, the program reads from the consistent
value of head as it has been backed up by the transaction
(indicated by the green arrow). And, after executing the
recover_alt() function, the function pop() also accesses
a consistent version of length that has been overwritten
during the recovery (indicated by the green arrows). Note
that the update to length at line 30 does not need to be
covered by a transaction because its value always gets reset
during recovery. Compared to adding length to the transac-
tion during the pre-failure stage, this fix is more efficient as
the recovery procedure only happens once for each failure.
Thus, we refer to this example as an inconsistency in the
post-failure stage. However, even with a correct implementa-
tion of recover_alt(), existing works in crash consistency
testing [22, 42] can report a false positive as they only check
the pre-failure stage.

void update(int idx,
item_t new_item) {

 backup.idx = idx;
 backup.val = arr[idx];
 persist_barrier();
 valid = 0;
 persist_barrier();
 arr[idx] = new_item;
 persist_barrier();
 valid = 1;
 persist_barrier();
}

1
2
3
4
5
6
7
8
9

10
11
12

void recover() {
 if (valid) {
  arr[backup.idx] = backup.val; 
 }
}

13
14
15
16
17

...
valid = 1;
...
valid = 0;
...
Correct Pre-Failure

Figure 2. An example of an inconsistency in program’s
pre-failure execution.

Example 2: Inconsistency in the pre-failure execution.
Figure 2 shows a snippet of code that updates a location idx
in a persistent array (arr). To guarantee crash consistency,
the update() function first backs up the old data and the up-
dated index (line 3-4). Then, it issues a persist_barrier()to
writeback the backup and sets a valid bit (line 6). After writ-
ing back valid with another persist_barrier(), it per-
forms the in-place update to the array (line 8). And finally,
it persists the updates and resets the valid bit (line 9-11).
Even though this example places a persist_barrier()at
the correct places, the pre-failure code is still semantically
incorrect as valid is set to wrong values (corrections are
shown in the green box). As a result, the recovery function
always performs the wrong operation: If a failure happens
before the in-place update has been written back (line 8), the
recovery program observes a valid = 0 and does not roll
back the potentially non-persisted update. And, if a failure
happens after the update() function (line 12) has completed,
the recovery program rolls back with the stale data that is
semantically inconsistent. Although the bug fix can apply to

both pre- and post-failure stages, the more appropriate way
is to change the values in the pre-failure stage as the variable
valid refers to the validity of the backup. For this reason, we
refer to this bug as an inconsistency in pre-failure stage. As
the consequence of this bug appears after the failure, prior
works [22, 42] cannot detect the bug either.

From these two examples, we conclude that it is hard to
guarantee crash consistency, not only because PM program-
ming requires a good knowledge of PM low-level instruc-
tions and libraries, but also because the pre- and post-failure
stages in the program need to work seamlessly. The inability
to implement a correct crash consistency mechanism for the
pre-failure execution leaves inconsistent data in PM, making
it impossible for post-failure execution to restore PM to a
consistent state. On the other hand, an incorrect recovery
and resumption execution is unable to consistently restore
PM. Figure 3 summarizes these two buggy scenarios where
the inconsistencies can be due to the pre-failure and/or post-
failure execution. Prior works [22, 42] have provided testing
tools to detect crash consistency bugs in the pre-failure stage
(the shaded area). However, without performing an end-to-
end test with both stages involved, it is impossible to cover
all buggy scenarios.

Pre-Failure Post-Failure

XFDetector (This Work)

Prior Works [22, 42]

Figure 3. Causes of inconsistency.

2.2 Causes of Inconsistency
We categorize the incorrect interactions between the pre-
and post-failure execution into two classes. The first class
of bugs happens when the post-failure execution reads from
data that may have not been persisted before the failure.
Prior works have suggested that there is a similarity between
multithreaded programs and the recovery in certain crash-
consistent programs. Lucia et al. model intermittent com-
puting in energy-harvesting devices as concurrency [45, 46].
Chakrabarti et al. make an analogy between races in mul-
tithreaded programs and buggy scenarios in their failure-
atomic programming model [5]. We further generalize this
interaction in PM programs — the execution before and after
a failure can be modeled as a writer and a reader from two
concurrent threads. In the conventional data race, a race
happens when at least one of the concurrent accesses to
the same memory location is a write [35]. In PM programs,
although the pre- and post-failure execution cannot perform
real concurrent accesses as they happen in different times,
this contentious interaction is still similar to a data race as
the value returned by the read after a failure is indeterminate,
depending on when the failure happens. Therefore, such a
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Figure 4. Cross-failure bugs from the example of
(a) Figure 1 and (b) Figure 2.

read from a potentially non-persisted location may cause
undefined behaviors afterward. We refer to reading data that
is not guaranteed to be persisted in the post-failure stage as
a cross-failure race. Figure 4a illustrates the cross-failure race
(indicated by the red arrow) between the pre- and post-failure
stages in the example of Figure 1. Due to a post-failure bug,
the program fails to overwrite the potentially non-persisted
length modified by the pre-failure “writer”, and thus, the
post-failure “reader” can access a non-deterministic value.
The second class of bugs happens when the post-failure

program reads semantically inconsistent data. Different from
the cross-failure race, where the persistence of data is un-
known, this type of cross-failure interaction is always incor-
rect as the actual implementation violates the semantics of
the intended crash consistency mechanism. Therefore, we
name the act of reading data that is semantically inconsistent
during the post-failure stage as a cross-failure semantic bug.
Figure 4b shows the cross-failure semantic bug in the exam-
ple of Figure 2. Due to the pre-failure bug that incorrectly
sets the values of valid, the post-failure recovery program
reads from a semantically inconsistent backup. Because the
valid bit is incorrectly set by the program implementation,
the status after the recovery is always incorrect.
Together, we refer to these two classes of programming

errors as cross-failure bugs. We refer to data on a PM location
as inconsistent if it contains updates that are not guaranteed
to be written back before a failure, and/or it is semantically
inconsistent according to the crash consistency mechanism.
A cross-failure bug happens due to the post-failure stage
reading data from such inconsistent PM locations that are
modified during the pre-failure stage. The goal of this work
is to detect cross-failure bugs in PM programs by considering
both the pre- and post-failure stages holistically.

3 Cross-Failure Bugs
In order to detect both types of cross-failure bugs, we first
need to precisely define the buggy scenarios. Therefore, in
this section, we provide definitions for the cross-failure race
and the cross-failure semantic bug.

3.1 Cross-Failure Race
Definition: The post-failure execution reads from datamod-

ified by the pre-failure execution that is not guaranteed to be
persisted before the failure.

The first type of cross-failure race covers the most general
case of inconsistent data on PM — it happens when writes
to PM are not guaranteed to be written back before a failure.
As data may not be persistent, the post-failure execution can
read incompletely updated data, leading to inconsistencies
after failure. Reading the variable length during post-failure
recovery in Figure 1 is a typical example of a cross-failure
race as length is not guaranteed to be persisted before fail-
ure. Its unknown persistence status can lead to uncertainties
during the post-failure stage. To formalize the cross-failure
race, we first define the following notations:

•Wx : A write to the PM location x .
• Rx : A read from the PM location x .
•Mx : A read/write from/to the PM location x .
• F : A failure point that preempts execution.

We then define the following ordering notations:
•Mx <hb F :Mx happens before the failure F .
•Wx ≤p Wy :Wy may not persist beforeWx is persisted.
•Wx ≤p F :Wx has been persisted before the failure F .

Therefore, we define a pre-failure writeWx as:Wx <hb F ,
and a post-failure read Rx as F <hb Rx . A read Rx has a
cross-failure race withWx iff:

Wx <hb F
∧

F <hb Rx
∧

¬
(
Wx ≤p F

)
. (1)

In other words, if a write is not guaranteed to be persisted
before the failure, reading its location during the post-failure
execution can cause a cross-failure race. Next, we introduce
a special case of the cross-failure race that does not lead to
inconsistencies but is necessary for recovery.

BenignCross-FailureRace: Aprogram intentionally reads
from potentially non-persisted data modified by the pre-failure
execution, without causing inconsistencies.

Cross-failure races can cause inconsistencies, however, not
all cross-failure races lead to inconsistencies. Instead, it is
sometimes necessary to read potentially non-persisted data
to correctly recover from a failure, analogous to the inherent
data races on synchronization primitives. We refer to such in-
tentional reads to inconsistent data as the benign cross-failure
race. For example, reading the valid bit of undo logs during
the post-failure recovery is regarded as a benign race, as the
valid bit enables the recovery program to determine which
version is consistent. The checksum-based recovery mecha-
nism (last row in Table 1) is another example of the benign
cross-failure race, as the post-failure recovery needs to read
potentially non-persisted data and its associated checksum
to verify data consistency. In these scenarios, a write to such
location inherently races with the post-failure read, while
the outcome is always well defined and thus, does not cause
any inconsistency. Benign cross-failure races are typically
used to determine the consistency status of other PM objects.



Mechanism Description Data Consistency

Undo logging
[11, 18, 23, 39, 43]

Keeps a backup of the old data before performing the in-place update. If a
failure happens during the transaction, the recovery mechanism reverts
the update with the backup.

If the transaction has been committed, the
updated data is consistent. Otherwise, the
log is consistent.

Redo logging
[16, 65, 67]

Performs updates to the log instead of updating in place. If a failure
happens during the transaction, the recovery mechanism discards the
incomplete redo log.

If the redo log has not been committed, the
existing data is consistent. Otherwise, the
committed log is consistent.

Checkpointing
[17, 30, 60]

Creates a checkpoint (i.e., snapshot) of persistent data periodically. After a
failure, the recovery mechanism reverts to the last committed checkpoint.

Data in the latest committed checkpoint is
consistent.

Shadow paging
[19, 38, 56]

Performs copy-on-write such that data under modification has a separate
copy. Once all updates to the shadow object are completed, the
mechanism swaps the original data with the shadow object (e.g., by
atomically updating a persistent pointer).

If the shadow object has been committed,
data in the shadow object is consistent.
Otherwise, the old data is consistent.

Operational
logging [48, 51]

Logs operations instead of data. If a failure happens during the operation,
the recovery mechanism re-executes the logged operation to overwrite
the incomplete operation.

Logged operations are consistent.

Checksum-based
recovery
[33, 59, 65]

Determines the consistency status of the modified data using checksums.
If a failure happens, the recovery program first reads the data in place and
then uses its checksum to determine the consistency.

Data protected by the corresponding
checksum is consistent.

Table 1. Data consistency requirements in different crash consistency mechanisms.

3.2 Cross-Failure Semantic Bug
Definition: The post-failure execution reads from data up-

dated during the pre-failure stage that is semantically incon-
sistent according to the program.
The second type of cross-failure bug covers inconsisten-

cies defined by the program semantics. PM programs typ-
ically follow certain crash consistency mechanisms. Even
if a PM location is persisted before failure, it can still be se-
mantically inconsistent if it violates the corresponding data
consistency requirements. Table 1 lists the data consistency
requirements of common crash consistency mechanisms.
Among these different mechanisms, we identify that most
crash consistency mechanisms keep two versions of data: a
consistent version for recovery and another for the current
update. The version that is regarded as consistent by the
crash consistency mechanism can be safely read during the
post-failure execution. Whereas, the inconsistent version
should be discarded or overwritten. These mechanisms typi-
cally use a commit variable to indicate whether a set of PM
addresses belongs to a consistent version. Data in a set of
PM addresses are regarded as consistent only if they were
updated between the last two updates to the associated com-
mit variable. For example, in the undo logging mechanism,
the program first logs the original data and sets the commit
variable (a valid bit) of the log. Then, it performs the in-place
update and unsets the commit variable. If a failure happens
after the last update to the commit variable, then the in-place
update is the consistent version, as it was modified between
the last two updates to the commit variable.
We formalize this commonly used version-based crash

consistencymechanism by introducing some extra notations:
• Cxi : The i-th write to the PM address x that alters the

consistency status of other PM addresses. We refer to the
write as a commit write and variable onx as a commit variable.

• Sx : A set of PM addresses, i.e., {m1...mn}, associatedwith
the commit variable on x .
In programs that consist of more than one commit variable,
their associated PM address sets need to be disjoint, i.e., given
two commit variables on address x and y, then

Sx ∩ Sy = ∅. (2)
Let the last commit write be the n-th write to x , i.e.,Cxn , The
PM addresses in S are semantically consistent iff:

∀mi ∈ Sx ,Cxn−1 ≤p Wmi

∧
Wmi ≤p Cxn . (3)

3.3 Summary
The Venn diagram in Figure 5 summarizes the two classes
of cross-failure bugs. The first class of cross-failure bug is
the cross-failure race that reads data not guaranteed to be
persisted before a failure, unless it is an intended benign
cross-failure race. The second class is the cross-failure se-
mantic bug that reads semantically inconsistent data. As the
focus of this work is to detect crash consistency bugs due to
cross-failure interactions, we do not consider other types of
bugs. Next, we describe our key ideas for detection based on
the definition of these cross-failure bugs.

Cross-Failure Semantic Bugs

Cross-Failure Race
Benign Cross-Failure Race

Other Bugs

Figure 5. Two classes of cross-failure bugs.



4 Key Ideas of XFDetector
So far, we have described the definitions of the cross-failure
bug. It would be greatly helpful to programmers if there is a
way to detect them. In this work, we propose XFDetector, a
Xross-Failure Detector. At the high-level, XFDetector traces
PM operations in both the pre- and post-failure stages, and
then detects inconsistencies due to buggy interactions be-
tween these two stages. In the design and implementation
of XFDetector, we answer two research questions: (1) What
is a proper approach to determine data consistency in order
to detect cross-failure races and semantic bugs? (2) What is
an efficient way to inject failures into the program to cover
all cross-failure interactions?

4.1 Data Consistency
Challenge. Detecting inconsistencies across the failure

requires determining whether data read by the post-failure
execution is consistent. However, data consistency is not
self-contained by data but depends on program’s manipula-
tion of persistent data. The challenge is to determine data
consistency based on the program execution.

Solution. The consistency status of persistent data
changes as the program performs updates to PM. Therefore,
to capture the updates, XFDetector traces PM operations
(e.g., WRITE, CLWB and SFENCE) in the pre- and post-failure
execution stages. To detect cross-failure bugs, XFDetector
implements a shadow PM that records the status of each PM
location. XFDetector first replays the pre-failure trace and
then the corresponding post-failure trace. XFDetector up-
dates the status of the shadow PMwhile replaying the traces,
and checks if the post-failure accesses satisfy the conditions
described in Section 3.
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Figure 6. Examples of detecting (a) a cross-failure race and
(b) a cross-failure semantic bug based on the data

consistency status of PM locations.

Figure 6a shows an example of detecting a cross-failure
race based on the persistence of data. A PM location, 0x10,
first gets modified and then the persistence status becomes
not persisted as this update is not guaranteed to be written
back. Then, a sequence of CLWB and SFENCE writes back this
location and thus, changing the status to persisted. Figure 6b
shows another example that detects cross-failure semantic
bugs by determining the data consistency status according
to the updates to the commit variable (indicated by the blue
arrows). There are two updates to the locations 0x50 and

0x90 that have been persisted before the failure. However,
being persistent does not mean the locations are consistent.
As the location 0x90 is last modified between the last two
updates to the commit variable, it is regarded as semantically
consistent, while the other location 0x50 is not.

4.2 Failure Injection
Challenge. XFDetector needs to inject failures during the

program execution in order to trigger both the pre- and post-
failure stages. We refer to such injected failures as failure
points. To capture all incorrect cross-failure interactions, the
naive solution is to inject failure points for all possible in-
terleavings of PM updates, considering the PM status can
change after each update. However, this exhaustive method
is extremely costly as XFDetector needs to perform post-
failure execution for every failure point.

Solution. We observe that updates to PM are not guaran-
teed to be persisted until explicitly written back (e.g., using
a persist_barrier()). We refer to a point in the program
that explicitly writes back data to PM before any future PM
operations as an ordering point. As such, persistent data can
only transition from an inconsistent state to a consistent
state after an ordering point. Therefore, it is only necessary
to check the consistency status immediately before each or-
dering point. Based on this observation, XFDetector only
injects failure points before each ordering point2. The or-
dering points that XFDetector concerns about include both
low-level operations (e.g., SFENCE) and high-level functions
that enforce writeback (e.g., TX_ADD() in PMDK [23]).

5 Implementation of XFDetector
5.1 An Overview of XFDetector

Detection ResultsAnnotation For Each Failure Point

Offline Online: Frontend Online: Backend

Pre-Failure Trace

Post-Failure Trace

❶ ❸
❹

❺

❻
Failure Point 

Instrumentation
PM 

Program XFDetector
❷

Execution

Figure 7. An overview of XFDetector.

Figure 7 shows an overview of XFDetector’s detection
procedure that consists of three steps: (1) an offline step that
requires annotation of the region-of-interest (RoI) in both
the pre- and post-failure stages, (2) an online frontend that
injects failure points and generates traces, and (3) an online
backend that detects and reports cross-failure bugs based
on the traces. The following is an overview of the detection
procedure: First, the programmer annotates the source code
and compiles it with XFDetector library (step ➊). Second,
XFDetector automatically instruments the program with
2Checksum-based mechanism is an exception that data consistency relies on
the verification of the checksum. We briefly discuss how to inject additional
failure points for this mechanism in Section 5.5.



failure points before its execution begins (step ➋). During
execution, it follows a procedure of execute pre-failure stage –
suspend at the failure point – execute the corresponding post-
failure stage, until it completes or reaches the termination
point (step ➌). During execution, it generates both the pre-
failure (step ➍) and post-failure traces (step ➎). Finally, as
the frontend is tracing, the backend performs detection and
reports the detection results (step ➏).

5.2 Software Interface
XFDetector provides a C/C++-compatible interface as listed
in Table 2. XFDetector has two types of functions. The first
type controls the detection procedure and allows program-
mers to select the region-of-interest (RoI) for detection. The
second type is used for annotating the source code to support
detection. For trusted code (e.g., implementation of library
functions), programmers can choose to skip the injection
of failure points and bug detection. Programmers can also
add additional failure points on demand. To expose crash
consistency semantics in programs directly built on low-
level primitives, XFDetector allows programmers to register
the commit variable and its associated PM objects. By de-
fault, if there is only one commit variable and no object
is specified, it covers all PM locations. During the execu-
tion of XFDetector, reads from the selected commit variables
are marked as benign cross-failure races, without being re-
ported as bugs. Both types of functions take two arguments,
condition and stage, which allow programmers to man-
age when the function takes effect. It is worth pointing out
that programmers only need to use the functions to select
the region for detection, without any need for additional
annotation when testing programs that are built on top of
PM libraries. The functions for annotation are needed only
when testing programs that directly use low-level primitives
or the implementation of PM libraries.

Function Description

C
on

tr
ol RoIBegin(condition, stage) Mark a region for

XFDetector detectionRoIEnd(condition, stage)
completeDetection(condition, stage) Terminate detection

D
et
ec
ti
on

A
nn

ot
. skipFailureBegin(condition) Mark a region that

skips failure pointsskipFailureEnd(condition)
addFailurePoint(condition) Add additional failures
skipDetectionBegin(condition, stage) Mark a region that

skips detectionskipDetectionEnd(condition, stage)
addCommitVar(variable) Mark a commit variable

and associated addressaddCommitRange(variable, addr, size)
Table 2. XFDetector software interface.

5.3 Tracing Mechanism
XFDetector’s tracing mechanism generates a trace of low-
level instructions, including PM reads and writes, fences, and
writeback operations. XFDetector leverages PMDK’s address
derandomization option to map PM locations to a prede-
fined virtual address range to distinguish PM operations,

and keeps the virtual address of each PM object the same
across different executions to simplify the detection process
(by setting the PMEM_MMAP_HINT environment variable [24]).
Due to the high performance overhead from tracing at such
fine granularity, XFDetector optimizes the tracing procedure
for programs built on PMDK [23] by skipping the trace of
internal implementation but only maintaining a trace of li-
brary function calls, such as PM transactions and allocations.
This way, the user code is traced at instruction granularity
and internal library code is traced at function granularity. In
the trace entry, XFDetector keeps track of the operation’s
instruction pointer, and the source/destination addresses and
their sizes. The instruction pointer is used for backtracing
the bug, and the address and size differentiates PM objects.

5.4 Detection Procedure
The detection procedure in XFDetector consists of two parts:
a frontend that injects failures and traces PM operations, and
a backend that detects bugs based on the traces.

Pre-failure: 

Pre-failure RoI

Post-failure:
Post-failure RoIPM  

Suspend

Execute

Tracing

Tracing
Copy

Complete

Complete

❶

❸

❹
❺

❷
(a)

Pre-failure: 

Post-failure:
(b)

Pre-failure Trace

Post-failure Trace

Write ...

Read ...

Replay

Replay

Check consistency
Update consistency

Send Trace Send Trace

TimestampConsist.Addr

❻

➑Shadow 
PM

Next failure point

➐

Persis.

Figure 8. XFDetector’s (a) frontend and (b) backend.

Frontend. We implement the frontend based on Intel’s
Pin [47] to perform tracing and failure injection. In order
to inject failures for testing, before executing the program,
the frontend first locates all ordering points in the binary
and then instruments the binary with failure handlers be-
fore each ordering point (as described in Section 4). After
instrumentation, the frontend performs tracing and failure
injection during execution (as shown in Figure 8a). In the
pre-failure stage, XFDetector collects a trace of PM writes
and library functions (step ➊). When encountering a fail-
ure point (i.e., failure handler) within the RoI, XFDetector
suspends the program (step ➋), makes a copy of the cur-
rent PM image (a pool file on PM) (step ➌)3, and spawns
its post-failure execution (step ➍). Then, in the post-failure
stage, XFDetector generates another trace (step ➎) until it
reaches the annotated termination point (or naturally termi-
nates). Then it continues the pre-failure execution andmoves
3The copy of PM image contains all updates (including those not persisted
before the failure point). XFDetector maintains a shadow PM to track which
locations have been persisted for the purpose of detection.



Figure 9. Transitions of the persistence state.

on to the next failure point (step ➏). During the remaining
pre-failure execution, XFDetector incrementally traces new
operations instead of starting over from the beginning for
better performance. While tracing, the frontend sends the al-
ready completed trace to the backend (through a pre-failure
trace FIFO and a post-failure trace FIFO) for detection. This
way, the detection procedure can overlap with tracing. Next,
we describe the backend detection mechanism.

Backend. XFDetector maintains a shadow PM with the
following fields for each PM address to record their status: (1)
a persistence state field that can be unmodified (U), modified
(M), writeback-pending (W), and persisted (P), (2) a consis-
tency state field that can be consistent (C) or inconsistent (IC)
according to program semantics, and (3) a timestamp Tlast
that indicates the last time the address was modified. XFDe-
tector uses the PM state field to detect the cross-failure race,
the consistency state field to detect the cross-failure seman-
tic bug, and the timestamp to update the consistency state
based on the commit variable. Each commit variable keeps
another timestamp Tprelast that indicates the pre-last time
it was modified. Each timestamp is obtained from a global
timestamp that increments after each ordering point.
During the detection procedure, XFDetector replays the

traces in the order of pre-failure and post-failure:
Pre-failure Trace: XFDetector’s backend replays the pre-

failure trace by updating the shadow PM for each write and
each library function that modifies PM (step ➐). XFDetector
updates both the persistence state and consistency state accord-
ing to the operations in the trace. For the persistence state of
a PM location, XFDetector follows the finite-state machine
in Figure 9. In brief, a WRITE changes the state to modified, a
CLWB changes the modified state to writeback-pending, and
finally, an SFENCE changes the state to persisted4. For consis-
tency state, this work supports common crash consistency
mechanisms that use commit variables and those that are
built on PMDK transactional functions5. Figure 10 shows the
consistency state transition of a PM locationm according to
the updates to its associated commit variable x (Cx refers to
a write to the commit variable), where the locationm can
be inconsistent in two ways: being uncommitted or stale. In
brief, an uncommitted location becomes consistent after an
update to the commit variable, and a stale location first gets

4XFDetector also handles non-temporal writes and other types of fence.
5We reserve an extensibility as discussed in Section 5.5 to support other
crash consistency mechanisms.

Inconsistent
Uncommited

(IC)

Consistent
(C)

Inconsistent
Stale
(IC)

WRITE m

Init.

WRITE x (Cx)WRITE m

WRITE m

WRITE x (Cx) WRITE x (Cx)

Figure 10. Transitions of the consistency state.

updated and then becomes consistent after being commit-
ted. XFDetector handles PMDK transactional functions in a
similar way to PMTest [42], where objects that have been
added to the transaction are regarded as consistent. Dur-
ing the update of the shadow PM, XFDetector also reports
performance bugs that use unnecessary PM operations (e.g.,
redundant writebacks as indicated by the yellow edges in
Figure 9), and unnecessary library functions (e.g., duplicated
TX_ADD() functions for the same PM object).

Post-failure Trace: XFDetector then replays the corre-
sponding post-failure trace (step ➑). Different from process-
ing the pre-failure trace, writes in post-failure change the
consistency status to consistent as they overwrite the old data.
Inconsistencies introduced by these writes will be tested later
when this code region runs as the pre-failure stage. For each
read, XFDetector first checks the consistency state and then
the persistence state of the target location, as reading a consis-
tent location is certainly bug-free, while reading a persisted
location can still be semantically inconsistent. Reading a com-
mit variable is a benign cross-failure race and not regarded
as a bug. On detection of a cross-failure bug, XFDetector
reports the file name and the line number of the reader and
the last writer that cause the bug. Next, we illustrate the
detection procedure with an example.

Example. Figure 11 demonstrates the detection proce-
dure, where Figure 11a, 11b, and 11c show the pre- and post-
failure trace, the shadow PM, and the code, respectively. The
valid variable is marked as a commit variable because it
decides the validity of the backup and the in-place update.

WRITE 0x100 16 
WRITE 0x110 4  
CLWB  0x100 64 
SFENCE
WRITE 0x200 16 

Pre-Failure:

Post-Failure:

Addr Persis. State

READ  0x110 1  
READ  0x100 16
...

Shadow PM:

(a)

(b)

(c)

void update(int idx, 
   item_t new_val) {
 backup=arr[idx];
 valid=1;//commit var
 persist_barrier();
 arr[idx]=new_val;
 persist_barrier();
...}

void recovery() {
 if (valid) {
  arr[idx]=backup;
 }
 ...
}
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4
5

6
7

Consist. Tlast

❹P

❻ F1/F2
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0x200-0x20F
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❶M ❸W IC
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❶ 0
❸W ❹P
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❺ 1

➐ F1
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arr[idx]

➐ F2

Trace:
<op> <addr> <size>

Figure 11. (a) The pre- and post-failure traces, (b) the states
in the shadow PM, and (c) the code demonstrating the steps

of the detection procedure.



XFDetector injects a failure point before each of the two or-
dering points (F1 and F2 before each persist_barrier()),
and each failure point triggers their corresponding post-
failure execution. We take the first two entries (line 6 and 7)
from the post-failure trace for demonstration. Initially, the
global timestamp is 0 and all PM addresses in the example
are unmodified. Next, we demonstrate the detection step-
by-step. Line 1: creates backup and updates its PM status
to modified. Line 2: sets valid and updates its PM status to
modified. As there is no update before the commit timestamp,
XFDetector does not change the consistency state of any PM
location. F1: the first failure triggers the post-failure execu-
tion. Line 6 (F1): reads from valid (the commit variable).
Line 7 (F1): reads from backup for rolling back. However, as
the PM state of backup is modified, XFDetector reports a
cross-failure race. Then, it continues pre-failure execution
from F1. Line 3: writes back a cache line that contains both
backup and valid, and updates both PM status to writeback-
pending. Line 4: places an SFENCE to make sure previous
pending writebacks are complete, and increments the global
timestamp. Line 5: updates the variable arr in-place and the
persistence status becomes modified. F2: the second failure
triggers the post-failure execution. Line 6 (F2): reads from
valid (the commit variable). Line 7 (F2): reads from backup
for rolling back. However, as the consistency state is incon-
sistent, XFDetector reports a cross-failure semantic bug. This
bug is due to backup not being updated before the last update
to the commit variable (valid). In summary, XFDetector re-
ports a cross-failure race at the first failure point (F1), and a
cross-failure semantic bug at the second failure point (F2).

Optimizations. XFDetector takes the following optimiza-
tion strategies for better efficiency without degrading its
detection capability. (1) Eliminate unnecessary consistency
checks: In the post-failure stage, there can be multiple reads
from the same PM location that was modified during the
pre-failure stage. XFDetector only checks the first read and
skips the rest as the result would be the same. (2) Eliminate
unnecessary failure points: In the pre-failure stage, there can
be two ordering points without any PM operations in be-
tween (e.g., two consecutive calls to PM library functions
with ordering points). XFDetector does not inject a failure
point in the middle for better performance.

Complexity. Assuming there are F failure points in the
pre-failure stage, and each corresponding post-failure execu-
tion has P operations on average, the complexity of the detec-
tion procedure is O (F · P). We observe that the post-failure
execution in most crash consistency mechanisms takes a
small, constant number of steps to recover from the failure.
For example, an undo logging mechanism only recovers the
last incomplete transaction. Therefore, the detection time
scales linearly with the number of failure points in most sce-
narios. We evaluate XFDetector’s scalability in Section 6.2.2.

5.5 Extensibility
This section describes the extensibility of XFDetector to
support other PM systems and detect other types of bugs.

Extending Operation Tracing. XFDetector decouples
the frontend tracing from the backend detection. The fron-
tend of XFDetector is built on Intel’s Pin [47] for fine-grained,
automated tracing. Although Pin is limited to user-space
programs and Intel processors, the backend of XFDetector
can be attached to other tracing frameworks, such as the
software-directed tracing in WHISPER [53] and PMTest [42].

Extending Detection Capability. We summarize the
possible approaches for extending XFDetector as the follow-
ing points. First, XFDetector functions (Table 2) can work as
building blocks to support other PM libraries. Take our imple-
mentation as an example, we skip the detection of PMDK’s
internal transactions but instead explicitly add a failure point
for each library function that contains ordering points. This
way, XFDetector only needs to handle programmer’s code.
Second, if the target program applies a crash consistency
mechanism that does not follow the approach described in
Section 3.2, programmers may need to modify the tool and
provide extra annotations. For example, to support a version-
basedmechanism that does not take the latest copy but uses a
specific one in the log, programmers need to add extra times-
tamps to track when the log was committed. The checksum-
based mechanism is another example, where the consistency
status is not determined by a commit variable but uses a pair
of data and its associated checksum. To test the correctness
of the checksum implementation, programmers may manu-
ally place a failure point using XFDetector’s library function
or modify the failure injection mechanism to automatically
add more failure points between ordering points. Third, if a
cross-failure bug is beyond the capability of XFDetector, the
failure injection framework can work in cooperation with
conventional debugging techniques. For example, bugs that
depend on data values, such as creating a log using incorrect
data, cannot be detected because XFDetector does not track
data values. To detect such bugs, programmers may place
assertions to check data values in the post-failure code and
then use XFDetector’s failure injection mechanism to trigger
the post-failure execution.

6 Evaluation
6.1 Methodology
CPU Intel Xeon Gold 6230, 2.1GHz, 20 cores
PM 2×128GB Intel DCPMM, App Direct, Interleaved
DRAM 4×16GB DDR4, 2666MT/s
OS Ubuntu 18.04, Linux kernel 4.15
Tools & Libs gcc/g++-7.4, Pin-3.10, PMDK-1.6, ndctl-61.2

Table 3. The evaluated system.

We evaluate our tool, XFDetector in a real system (Ta-
ble 3) with Intel’s Optane DC Persistent Memory Module



(DCPMM). PM is mounted with the DAX option to bypass
OS indirections [27]. Table 4 lists the evaluated PM programs,
including 5 micro benchmarks from PMDK [23] examples
and 2 real-world workloads: Redis [25] and Memcached [37].
The transaction-based programs are built with PMDK’s libp-
memobj, and the low-level ones are built with libpmem. We
annotate the source code with XFDetector interface for cross-
failure bug detection. Table 4 lists the lines of code (LOC)
of the original version and our annotation. We modify the
Makefile to link the test program with the shared object
of XFDetector’s interface for all workloads. We mark the
entire program as RoI (both pre- and post-failure) for the
micro benchmarks, and select the code region that performs
updates to PM objects as the pre-failure RoI and the region
that performs recovery as the post-failure RoI for larger real-
world workloads.

Lines of code (LOC)
Name Type Original Annotation

M
ic
ro
be

nc
h B-Tree

Transaction

981 4
C-Tree 698 4
RB-Tree 855 4
Hashmap-TX 741 4
Hashmap-Atomic Low-level 837 5

R
ea
l Memcached 23k 10

Redis Transaction 66k 6
Table 4. The evaluated PM programs.

6.2 Performance
6.2.1 Execution Time. This experiment evaluates the ex-
ecution time of XFDetector. We run each workload with one
transaction/query that performs an insertion, and another
one for each failure point. Figure 12a shows the wall-clock
time (seconds) of XFDetector for each workload. XFDetector
takes an average of 40.6 seconds to analyze one insertion
operation. We further break down the execution time into
two parts: the pre- and post-failure stages. We observe that
the post-failure takes the majority of the execution time as
XFDetector spawns the post-failure execution for each failure
point. We further compare the execution time of XFDetec-
tor with a “Pure Pin” configuration where the Pintool only
traces the PM read/write operations, and the original pro-
gram that runs without any tool (Figure 12b). On average
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Figure 12. Performance of XFDetector: (a) wall-clock time
and (b) slowdown over pure Pin and original program.

(Geo. mean), XFDetector is 12.3× slower than “Pure Pin” and
400.8× slower than the original program. We conclude that
the repeated post-failure execution is the major bottleneck,
and Pintool is the secondary bottleneck. However, the post-
failure executions are independent as they operate on a copy
of the original PM image, and therefore, can be parallelized.
We leave the parallelized detection as a future work.

6.2.2 Scalability. This experiment scales the number of
transactions performed in the pre-failure stage during detec-
tion. As real-world workloads execute upon query, we scale
the number of pre-failure transactions in micro benchmarks
and keep the post-failure constant (one transaction). The
primary axis in Figure 13 indicates the execution time (wall-
clock time) of detection with variable numbers of pre-failure
transactions, and the secondary axis indicates the number of
failure points in the pre-failure stage. This experiment shows
that the execution time increases linearly as the number of
failure points increases.
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Figure 13. The execution time of micro benchmarks with
variable numbers of pre-failure transactions.

6.3 Detection Capability
In this section, we first validate the debugging capability of
XFDetector, and then demonstrate the new bugs we found.

PMTest Bug Suite Additional
Name R S P R S

B-Tree 8

N/A

2 4

/C-Tree 5 1 1
RB-Tree 7 1 1
Hashmap-TX 6 1 3
Hashmap-Atomic 10 2 3 4

Table 5. The synthetic bugs for validation
(R: cross-failure race, S: cross-failure semantic bug,

and P: performance bug).

6.3.1 Validation. Table 5 summarizes the synthetic bugs
that we have validated using XFDetector. We first validate
XFDetector’s detection capability with the bug suite from
PMTest [42]. As cross-failure semantic bugs are beyond
PMTest’s scope, we create additional synthetic, cross-failure
semantic bugs on top of the Hashmap-Atomic example which
is built on low-level primitives.We do not create cross-failure
semantics bugs for other workloads as the commit variables
are managed by their transactional library functions. We also
create other cross-failure race bugs for better validation. The



validation shows that XFDetector is effective in detecting
these synthetic bugs and covers more types of bugs than
existing works [22, 42].
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int util_pool_create_uuids(){
 ...
 // set pool metadata
 util_poolset_create_set();
}

(b)

Without protection by transaction, 
post-failure can read inconsistent 
num_dict_entries.

void hash_atomic_insert(...){
 ...
 hash_map->count++;
 pmemobj_persist(...);
 hash_map->count_dirty=0;
 ...
}

10
11
12
13
14
15
16 Post-failure can read from 

potentially uninitialized count.

PMEMobjpool* pmemobj_createU(){
 ...
 util_pool_create(...);//create
 ...
}
void util_pool_create(...) {
 util_pool_create_uuids(...);
}

1
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3
4
5
6
7
8

9
10
11
12
13

Failure happens during 
metadata initialization.

void initPersistentMemory(void){
 ... // open pool and get root
 root->num_dict_entries = 0;
 ...
}

1
2
3
4
5

(c)

void create_hashmap(...){
 // initialize
 hashmap->seed = seed;
 hashmap->hash_fun_a = rand();
 ... 
 POBJ_ALLOC(...); // allocate PM
 ...
 pmemobj_persist(...);
}

(a)

Updates to hashmap metadata may not persist. 
Post-failure can read inconsistent hash functions.

Figure 14. New bugs detected by XFDetector in
(a) Hashmap-Atomic, (b) Redis, and (c) libpmemobj.

6.3.2 New Bugs. XFDetector found new bugs that have
not been identified by prior works.Bug 1 is found in a PMDK
example, Hashmap-Atomic (hashmap_atomic.c:132-138)
that uses the low-level operations to ensure crash consis-
tency. The initialization function (create_hashmap) assigns
hashing functions and their seed as part of the hashmap’s
metadata (line 3 and 4 in Figure 14a). These updates are not
protected by any crash consistency mechanism. Therefore,
if a failure happens before they are written back (line 8), the
post-failure program can read from invalid function pointers
and an invalid seed value that are not completely persisted
to PM, leading to a cross-failure race. Bug 2 is also found
in the Hashmap-Atomic example (hashmap_atomic.c:280),
where the program accesses a potentially uninitialized PM
location (count). The program allocates a piece of PM when
creating the hashmap (line 4 in Figure 14a). If a failure hap-
pens right after the allocation, the post-failure program can
read the variable count (line 12) that may not be initialized.
This example happens to use an allocator that implicitly ini-
tializes the location with zeros. However, with a different
allocator, the implicit initialization is not guaranteed, and
therefore, can lead to a cross-failure race as the pre-failure
program creates an unmodified PM location that is read by
the post-failure execution. We only annotated a commit vari-
able, count_dirty, to detect these two bugs. Bug 3 is found
in Redis [25] (server.c:4029), where the Redis server ini-
tializes PM (Figure 14c). Similar to the previous bug, the
initialization procedure is not protected by a transaction,
and therefore, a failure in the middle of the initialization

can lead to a cross-failure race. We did not manually ex-
pose any program semantics to detect such bug as Redis
is transaction-based. Bug 4 is found in PMDK’s libpmem-
obj library (obj.c:1324). The PM pool creation function,
pmemobj_createU(), initializes a region of PM and sets its
metadata (through util_pool_create_uuids()) as demon-
strated in Figure 14c. All data have been persisted at the end
of the creation function, however, there is no consistency
guarantee in the middle. A failure point injected in the mid-
dle of the creation process can cause the created PM pool to
have incomplete metadata. Then, the post-failure program
tries to open the pool for recovery but fails. Although the
post-failure open() operation is a syscall and out the scope
of tracing, XFDetector’s failure injection mechanism makes
this bug observable. We conclude that XFDetector is effective
at detecting cross-failure bugs with minimum annotation.

7 Discussion
In this section, we discuss the assumptions and the scope of
this work.

Detection Scope. XFDetector can detect cross-failure
bugs due to reading non-persisted or semantically inconsis-
tent data. The detection mechanism takes into account the
address and the order of PM updates instead of data values
(except for commit variables that can affect the procedures in
the post-failure stage). Therefore, programming errors such
as writing incorrect data values to non-commit variables
(e.g., log incorrect data) are out of the scope. Section 5.5 has
described the way to extend the capability by incorporating
conventional debugging methods with XFDetector.

Multithreaded PM Programs. The frontend of XFDe-
tector is thread-safe by using thread-local storage and Pin’s
locking primitives, and the backend runs in a separate pro-
cess without being interfered by the multithreaded workload.
Therefore, programmers do not need to adjust XFDetector to
test multithreaded programs. The concurrent threads in our
workloads perform PM operations on independent tasks (e.g.,
each thread takes a different request), and therefore, we do
not implement cross-failure bug detection for collaborative
updates to PM from concurrent threads. However, XFDetec-
tor can be extended to support such scenarios by sharing
a global timestamp among multiple threads and introduce
more program-specific rules for consistency checking.

External Dependency. XFDetector executes the post-
failure stage on a temporal copy of the original PM image.
Therefore, external events (e.g., I/O) can possibly cause vari-
ation among different post-failure executions. However, we
did not observe any external events that change the PM
status in the evaluated workloads.



8 Related Works
Crash Consistency Mechanisms. Prior works have pro-

vided a variety of crash consistency mechanisms to ensure
the consistency across failure. In general, there are two types
of methods. The first type of mechanisms proposes new hard-
ware features for PM system. For example, ATOM [29], Kiln
[75], and DudeTM [38] provide efficient hardware trans-
actions, ThyNVM [60] and PiCL [55] propose transparent
hardware-based checkpointing, DPO [32] and HOPS [53]
introduce new persistency models, and SCA [40], Osiris [74],
and Janus [41] provide efficient and crash-consistent PM
systems with security guarantees. The second type of mech-
anisms provides software and library support for existing
PM hardware. For example, PMDK [23], NV-Heaps [11], and
Mnemosyne [65] provide PM libraries, and PMFS [14], NOVA
[71], and BPFS [13] implement PM-optimized file systems
to manage persistent data. There are also works that extend
multithreading synchronization to the persistence domain,
such as Atlas [5], SFR [18], and iDO [39]. XFDetector can
be extended with new PM library functions and low-level
primitives to detect cross-failure bugs in these PM systems.

Crash Consistency Testing. There have been works that
detect inconsistencies in conventional file systems that run
on hard drives [7, 15, 50, 52, 63]. Due to the fundamental
difference between the hard drive and the byte-addressable
PM, these methods are not applicable to PM programs. There
are also toolchains specifically designed for PM. PMTest [42]
and Pmemcheck [22] test crash consistency in custom PM
programs. However, they only consider the pre-failure stage
without testing both the pre- and post-failure stages holisti-
cally. Therefore, XFDetector has better debugging capability
than these works. Yat [36], a tool that validates Intel’s PM-
optimized POSIX-compliant file system (PMFS [14]), consid-
ers both stages by running the recovery code in PMFS and
then checking data consistency. However, Yat’s approach
does not apply to generic programs as it relies on file sys-
tem check (fsck) to detect inconsistencies. In comparison,
XFDetector supports custom PM programs.

Multithreading and Persistence. Prior works have
made an analogy between the recovery of PM programs and
multithreaded programs. Atlas [5] proposes failure-atomic
sections (FASEs) as a crash-consistent programming model
and introduces the concept of restart-race-freedom of FASEs
that guarantees a correct recovery after a failure. DINO [46]
models the intermittent execution in energy-harvesting de-
vices as concurrency and proposes atomic tasks to overcome
unexpected behaviors due to “races”. The concepts of “race”
introduced by these prior works only support their specific
programming models. In comparison, this work systemati-
cally defines such racing scenarios for generic PM programs
and guarantees the correctness of crash consistency mecha-
nisms based on the definitions.

Conventional Data Race. There has been a myriad of
works on formalizing [1, 54] and detecting [2, 58, 61, 62, 66]
data races in multithreaded programs. The cross-failure race
in this work are analogous to the data race, as the value
returned by a read is indeterminate and hence the reader
may access incorrect data in both scenarios. However, cross-
failure races differ in two fundamental ways: (1) the write
and the read are separated by a failure without actually being
performed concurrently, and (2) the relevant happens-before
relations are with the persistence of writes instead of their
visibility to other threads.

9 Conclusions
In this work, we show that both the pre- and post-failure
stages are equally critical to ensure the crash consistency
guarantee. We categorize two classes of cross-failure bugs
due to incorrect interactions across the failure: the cross-
failure race, where the post-failure execution reads from a
non-persisted data, and the cross-failure semantic bug, where
the post-failure execution reads from data that violates the
crash consistency semantics. We provide XFDetector that
detects both classes of cross-failure bugs by holistically con-
sidering both the pre- and post-failure stages. XFDetector
has detected four new bugs in three pieces of PM softwareg:
one of PMDK’s examples, a PM-optimized Redis database,
and a PMDK library function.

A Artifact Appendix
A.1 Abstract
This artifact provides the source code of XFDetector, a test-
ing tool that detects crash consistency bugs in programs for
persistent memory (PM) systems. It also provides a set of
example workloads and necessary dependencies. At the high-
level, out tool, XFDetector detects crash consistency bugs
in PM programs by injecting failures during program execu-
tion and replying the traces of both the pre- and post-failure
execution. As XFDetector is designed for PM systems, this ar-
tifact requires real or emulated PM system and a compatible
Linux distribution.

A.2 Artifact Check-list (meta-information)
• Program: The testing tool of XFDetector.
• Data set: Open-source workloads from Intel and Lenovo.
• Hardware: A system with a real or an emulated PM.
• Output: Bug reports for test programs.
• Experiments: Bug detection and execution time.
• Publicly available?: Yes.
• Code licenses: BSD.
• Archive DOI: https://doi.org/10.5281/zenodo.3619413.

A.3 Description
A.3.1 How delivered. We archived the source code at
Zenodo: https://doi.org/10.5281/zenodo.3619413. For the lat-
est version, please check our GitHub page: https://xfdetector.
persistentmemory.org.

https://doi.org/10.5281/zenodo.3619413
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A.3.2 Hardware Dependencies. XFDetector supports
systems with a real (e.g., NVDIMM and Intel DCPMM) or an
emulated PM. For PM emulation, please see PMDK’s docu-
mentation for detailed instructions: https://pmem.io/2016/
02/22/pm-emulation.html. Note that PM (real or emulated)
must be mounted as a DAX file system.

A.3.3 Software Dependencies. The following is a list of
software dependencies for XFDetector and the test work-
loads (the listed versions have been tested, other versions
might work but not guaranteed).
• OS: Ubuntu 18.04 (kernel 4.15)
• Compiler: g++/gcc-7.4
• Libraries: libboost-1.65 (libboost-all-dev), pkg-config
(pkg-config), ndctl-61.2 (libndctl-dev), daxctl-61.2
(libdaxctl-dev), autoconf (autoconf), and libevent
(libevent-dev). Other dependent libraries for the work-
loads are contained in this repository.

A.3.4 Data Sets. Our evaluated workload are as follows:
• Five PMDK [23] example workloads (B-Tree, C-Tree, RB-
Tree, Hashmap-TX and Hashmap-Atomic).

• Intel’s Redis implementation for PM [25].
• Lenovo’s Memcached implementation for PM [37].

A.4 Installation
This artifact is organized as the following structure:
• xfdetector/: The source code of our tool.
• driver/: The modified driver function for PMDK examples.
• pmdk/: Intel’s PMDK library, including its examples.
• redis-nvml/: A Redis implementation (from Intel) based on
PMDK (PMDK was previously named as NVML). This folder
will be created after executing the script init_redis.sh.

• memcached-pmem/: A Memcached implementation (from
Lenovo) based on Intel’s PMDK library.

• patch/: Patches for reproducing bugs and trying our tool.

To build XFDetector and the test workloads, please use
the following commands:

$ cd <XFDetector Root>
$ export PIN_ROOT=<XFDetector Root>/pin−3.10
$ export PATH=$PATH:$PIN_ROOT
$ make

Our tool and test programs also have separate makefiles.
Please follow the instructions on our GitHub page if need to
build them separately.

A.5 Experiment Workflow
Figure 7 describes the high-level workflow of XFDetector.
The programmer annotates the test program with XFDetec-
tor’s interface. When the testing begins, the programmer
first executes the XFDetector and then executes our Pintool.

During execution, our Pintool sends the PM trace entries to
XFDetector for testing. We refer to this period as the pre-
failure stage. Once a trace entry triggers a failure point, our
Pintool suspends the pre-failure execution, and lets XFDetec-
tor copy the PM image and perform the post-failure execution
(also uses our Pintool for tracing). The post-failure program,
sends a PM trace to XFDetector for cross-failure bug detec-
tion during execution. In this artifact, we provide scripts that
automate these steps.

A.6 Evaluation and Expected Result
Before running any program, please execute the following
commands under the root directory of XFDetector:

$ export PIN_ROOT=<XFDetector Root>/pin−3.10
$ export PATH=$PATH:$PIN_ROOT
$ export PMEM_MMAP_HINT=0x10000000000

The environment variable PMEM_MMAP_HINT sets a prede-
fined virtual address for PM allocation. XFDetector depends
on this functionality to identify PM accesses.

PMDK Examples. We provide patches that create buggy
PM programs and their inputs that trigger the bugs. The
patches are under xfdetector/patch folder. Please execute
the following commands to run our examples:

$ ./run.sh <WORKLOAD> <INITSIZE> <TESTSIZE> <PATCH>

- WORKLOAD: The workload to test.
- INITSIZE: The number of data insertions when initializ-
ing the PM image before testing starts.

- TESTSIZE: The number of data insertions when running
the program with XFDetector.

- PATCH: The name of the patch that generates bugs for
WORKLOAD. If empty, the script tests the original program.
The following example reports a cross-failure race bug

(patch named as btree_race1.patch) in btree, where the
program inserts 5 items during initialization and 5 more
items during testing:

$ ./run.sh btree 5 5 race1

For a complete list of tests and corresponding input pa-
rameters, see runallPMDK.sh. You can also directly run the
script to execute all available tests.

Redis. Use script runRedis.sh under folder
xfdetector/ to run Redis:

$ ./runRedis.sh <TESTSIZE>

- TESTSIZE: The number of database insertions for testing.

Memcached. Use script runMemcached.sh under folder
xfdetector/ to run Memcached:

$ ./runMemcached.sh <TESTSIZE>

https://pmem.io/2016/02/22/pm-emulation.html
https://pmem.io/2016/02/22/pm-emulation.html
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- TESTSIZE: The number of database insertions for testing.

Output. XFDetector reports all detected bugs after testing
is complete. The output is dumped to the screen and the
corresponding <WORKLOAD>_<TESTSIZE>_debug.txt file.

A.7 Experiment Customization
XFDetector provides an interface for annotating programs
and PM libraries. Please see Table 2 for the usage. When
compiling the programs with XFDetector annotation, please
add compiler flags following this example:
LIBS+= −L<XFDetector Root>/xfdetector/build/lib \

−Wl,−rpath=<XFDetector Root>/xfdetector/build/lib \
−lxfdetector_interface

CFLAGS+= −I<XFDetector Root>/xfdetector/include
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