
PMFuzz: Test Case Generation for Persistent Memory Programs

Sihang Liu∗

University of Virginia
Charlottesville, Virginia, USA

sihangliu@virginia.edu

Suyash Mahar∗

University of California, San Diego
San Diego, California, USA

smahar@ucsd.edu

Baishakhi Ray
Columbia University

New York City, New York, USA
rayb@cs.columbia.edu

Samira Khan
University of Virginia

Charlottesville, Virginia, USA
samirakhan@virginia.edu

ABSTRACT

The Persistent Memory (PM) technology combines the persistence

of storage with the performance approaching that of DRAM. Pro-

grams taking advantage of PM must ensure data remains recover-

able after a failure (e.g., power outage), and therefore, are susceptible

to having crash consistency bugs that lead to incorrect recovery

after a failure. Prior works have provided tools, such as Pmem-

check, PMTest, and XFDetector, that detect these bugs by checking

whether the trace of PM accesses violates the program’s crash con-

sistency guarantees. However, detection of crash consistency bugs

highly depends on test casesÐa bug can only be detected if the

buggy program path has been executed. Therefore, using a test case

generator is necessary to effectively detect crash consistency bugs.

Fuzzing is a common test case generation approach that requires

minimum knowledge about the program. We identify that PM pro-

grams have special requirements for fuzzing. First, a PM program

maintains a persistent state on PM images. Therefore, the fuzzer

needs to efficiently generate valid images as part of the test case.

Second, these PM images can also be a result of a previous crash,

which requires the fuzzer to generate crash images as well. Finally,

PM programs can have various procedures but only those perform-

ing PM operations can lead to crash consistency issues. Thus, an

efficient fuzzer should target those relevant regions. In this work,

we provide PMFuzz, a test case generator for PM programs that

meets these new requirements. Our evaluation shows that PMFuzz

covers 4.6× more PM-related paths compared to AFL++, a widely-

used fuzzer. Further, test cases generated by PMFuzz discovered

12 new real-world bugs in PM programs which have already been

extensively tested by prior PM testing works.

∗Equal contribution. Suyash Mahar contributed to this work during his internship at
the University of Virginia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS ’21, April 19ś23, 2021, Virtual, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446691

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging; · Hardware→ Memory and dense storage.

KEYWORDS

PersistentMemory, Crash Consistency, Testing, Debugging, Fuzzing

ACM Reference Format:

Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. 2021. PMFuzz:

Test Case Generation for Persistent Memory Programs. In Proceedings of the

26th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’21), April 19ś23, 2021, Virtual,

USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3445814.

3446691

1 INTRODUCTION

Persistent memory (PM) technologies, such as Intel’s Optane [30],

provide a class of high-performance and byte-addressable mem-

ory. The use of PM allows a program to directly access persistent

data through the load/store interface, without using software in-

termediaries. Thus, it blurs the boundary between memory and

storage. As Intel’s PM modules become widely available on the

market [30] and are getting deployed in data centers [5, 6], a myr-

iad of real-world applications have been developed for PM, such as

databases [29, 39, 51], key-value stores [4, 31, 84, 85], customized

PM applications [3, 12, 13, 16, 28, 67, 78, 89], and PM libraries that

improve programmability [15, 26, 32, 79]. These software systems

generally require that the persistent data can recover to a consistent

state in the event of a failure (e.g., a power outage or system crash)Ð

a requirement referred to as the crash consistency guarantee.

However, due to the reordering and buffering in the volatile

memory hierarchy, writes to PM need to be carefully managed

to ensure crash consistency. For example, appending a node to a

persistent linked list requires the node to become persisted prior to

the updated tail pointer that points to the new node. To prescribe

the order in which writes become persistent, PM hardware systems

have introduced new instructions, such as CLWB and SFENCE from

x86 [38]. With the hardware support, programming for PM systems

becomes possible but remains challengingÐprogrammers need to

have a good knowledge of both their programs and the hardware

primitives. PM libraries, such as Intel’s PMDK [32], improve the

programmability by providing a higher-level interface. However,

programmers still need to understand the crash consistency guar-

antees from the library and the desired failure-recovery mechanism

487

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3445814.3446691
https://doi.org/10.1145/3445814.3446691
https://doi.org/10.1145/3445814.3446691

ASPLOS ’21, April 19–23, 2021, Virtual, USA Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan

in their programs. Prior works have pointed out that programming

for PM systems is error-prone [10, 49, 57, 58, 71]. A misuse of PM

primitives or library functions, such as missing CLWB and SFENCE

operations or not backing up data, can break the crash consistency

guarantees, which is referred to as a crash consistency bug. Whereas,

overuse of these functions, such as placing a redundant SFENCE or

making unnecessary backups, can degrade the performance, which

is referred to as a performance bug.

To mitigate the difficulties in PM programming, there have been

testing tools that detect crash consistency bugs, as well as per-

formance bugs [10, 49, 57, 58, 66], by tracing PM operations and

determining whether they violate any of the crash consistency guar-

antees. However, a major issue remains unsolvedÐthese testing

tools still require the buggy procedure to be actually executed. For

example, to reproduce a bug in PMDK [37] that was reported by

PMTest [58], the inputs to a B-Tree-based key-value store need

to be carefully designed, in order to execute a program path that

triggers B-Tree’s insertion and rebalancing procedures. Hence, even

with the aid of PM testing tools, bugs cannot be detected without

having inputs to trigger the required execution path. In this work,

we aim to assist PM programming by generating test cases to cover

nontrivial crash consistency and performance bugs.

Due to the already complicated programming for PM systems, a

tool for test case generation ideally should not place an additional

burden on programmers. Fuzzing, a widely-used test case genera-

tion method, perfectly satisfies this demand as it requires minimum

knowledge about the target code base and has been proven to be

effective [8, 18, 20, 24, 91]. At a high-level, a fuzzer iteratively gen-

erates new test cases by mutating existing ones, where high-value

test cases, such as those that explore new branches, are reused in

future iterations. Although fuzzing is an effective method, we iden-

tify that in order to generate test cases for PM programs efficiently,

additional requirements need to be satisfied.

First, PM programs maintain the persistent state on PM devices

(e.g., as a PM image in a DAX file system), different from conven-

tional programs. A PM program takes not only the regular program

input (e.g., a command that inserts a key-value pair) but also a PM

image which contains an existing persistence state. As the proce-

dure of loading an existing PM image and performing operations on

top can also face crash consistency bugs [49, 57], it is necessary for

a fuzzer to provide PM images as inputs. Fuzzers for conventional

programs perform mutation to generate regular inputs (e.g., com-

mands). In comparison, PM images have a much larger exploration

space (e.g., tens of MBs). Therefore, generating PM images through

direct mutation is ineffective and will likely produce invalid im-

ages. For example, a randomly mutated PM image may have illegal

pointers that may cause the program to abort in the beginning with-

out exploring any useful paths. Even though recent works have

designed fuzzers for file system images, they require a well-defined

image layout [44, 88]. As PM programs tend to customize the per-

sistent data management, methods taken by file system fuzzers are

not suitable for PM image generation. Therefore, the first challenge

is to efficiently generate valid PM images.

Second, PM programs also need to recover from PM images that

are resulted from failures during program execution, which we

refer to as crash images. Prior works have shown that the recovery

procedure is also susceptible to crash consistency bugs [49, 57].

Therefore, the fuzzer needs to generate not only normal PM images

but also crash images for thorough testing. However, a program

can fail at any point during execution, leading to a potentially

infinite number of crash images. Therefore, the second challenge is

to generate crash images that are most effective for testing.

Finally, PM programs may contain procedures for different pur-

poses, not limited to managing PM, especially in real-world work-

loads. On the other hand, only PM operations are critical to crash

consistency bugsÐperforming writes to PM without taking care

of their ordering can leave inconsistent data on PM, and reading

from them can cause the later execution to behave incorrectly [57].

However, traditional coverage metrics, such as branch coverage,

used by conventional fuzzers do not target procedures with the

most concerned PM operations. Therefore, the third challenge is to

design a fuzzer that can target PM-related procedures.

The new requirements for test case generation are critical to

systematically testing PM programs. However, existing fuzzers

are incapable of meeting these requirements. In this work, we de-

velop PMFuzz (available at https://pmfuzz.persistentmemory.org),

a fuzzer that aims to generate test cases for detecting crash consis-

tency and performance bugs in PM programs. Next, we describe

the three high-level ideas of our design.

PM Image Generation. Existing fuzzers either do not target

large PM images or require a fixed image layout, as directly mu-

tating an image can likely generate invalid images that cannot ex-

plore useful paths. Therefore, an effective image generation method

should guarantee valid PM images. We observe that a PM image is

essentially an outcome of input commands. Therefore, our key idea

is to leverage the program logic to mutate an existing PM image.

PMFuzz incrementally generates the image by applying the fuzzing

logic on the input commands. And eventually, the PM image will

be thoroughly mutated through the iterative fuzzing procedure.

Crash Image Generation. In addition to taking normal images

as inputs, PM programs can also execute on crash images that are

caused by failures. Although a failure can occur at any point during

execution, the recovery procedure typically depends on a few key

variables that are stored in the image. For example, an undo-log-

based program performs the following steps: back up the old data

in the undo log, set the valid bit of the log, perform in-place update,

and finally unset the valid bit. In case of a failure, the recovery

procedure will take one of these two paths depending on the value

of the valid bit: one path applies the undo log and the other directly

resumes the execution. As such, there is a control-flow dependency

between the execution before and after the failure. Based on this

dependency, only two failure images are needed to cover both paths:

one with the valid bit set to one and another set to zero. Our key idea

is to minimize the number of crash images by only generating the

images that can affect the control-flow in the recovery procedure.

Coverage of PM Path. As crash consistency and performance

bugs are caused by the misuse of PM operations, achieving high cov-

erage of these bugs requires the fuzzer to perform a targeted fuzzing

on program paths with PM operations. To enable this prioritization,

we first define the PM path as a path that consists of program state-

ments with PM operations (e.g., read, write, writeback, etc.). Then,

PMFuzz monitors the statistics of PM paths during fuzzing, and

488

https://pmfuzz.persistentmemory.org

PMFuzz: Test Case Generation for Persistent Memory Programs ASPLOS ’21, April 19–23, 2021, Virtual, USA

prioritizes test cases that cover new PM paths. By focusing on PM

paths, PMFuzz can efficiently generate more test cases that target

crash consistency and performance bugs.

Based on the key insights above, we implement PMFuzz on top

of an open-source fuzzer, AFL++ [20], and evaluate it in a real PM

system. Our contributions are the following:

• PMFuzz is the first test case generator for detecting crash consis-

tency and performance bugs in PM programs.

• We evaluate PMFuzz using eight representative PM programs in a

real PM system. On average, PMFuzz covers 4.6×more PM paths

over the well-known fuzzer, AFL++, within 4 hours of fuzzing.

• Even though these PM programs have been extensively tested

by prior works [10, 57, 58, 66], we detect 12 new real-world bugs

with PMFuzz’s systematic test case generation.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the PM programming interface

that guarantees recoverability and then describe the difficulties.

2.1 Programming for PM Systems

Persistent memory (PM) technologies, such as Intel’s Optane [30],

provide high-speed and byte-addressable access to persistent data.

Programs can better leverage the performance of PM by directly

managing persistent data in PM and bypassing the OS indirections

(e.g., file systems). A common approach is to create a PM image in

a file system with the direct access support (e.g., Ext4-DAX), map

it to the program’s address space, and manipulate the persistent

data [77]. Recent PM applications, such as databases and key-value

stores [4, 29, 31, 39, 51, 84, 85], PM-optimized file systems [19,

42, 48, 86, 87], PM libraries [15, 26, 32, 79], and other customized

applications that are built upon those libraries [3, 12, 13, 16, 28, 67,

89] directly manipulate memory to avoid the OS overhead.

Programs developed for PM typically require data to be recover-

able in case of a failure, which we refer to as the crash consistency

guarantee. However, due to the reordering and buffering in the

memory hierarchy, the order a write becomes persistent may differ

from what the program intends to. To support programming for

PM systems, hardware platforms have introduced new instructions.

For example, in an x86 system, a sequence of łCLWB;SFENCEž in-

structions [38] ensures that a cache line will be persisted prior to

subsequent writes (usually referred to as a persist_barrier());

in an ARM system, similar functionalities can be implemented us-

ing a sequence of łDC CVAP;DSBž instructions [2]. Building upon

these primitives, PM libraries provide software interfaces, such as

transactions [15, 26, 32, 79] and persistent data structures [16, 78],

for better programmability. For example, Intel’s PMDK library [32]

provides a transaction interface, with wrappers such as TX_BEGIN

and TX_END that mark failure-recovery regions, TX_ADD() that per-

forms logging, and D_RO and D_RW (direct read-only/read-write)

that obtain pointers to objects in the memory-mapped PM image.

These programming interfaces make it easier to manage per-

sistent data and develop crash consistency mechanisms, such as

undo/redo logging [14, 25, 28, 32, 46, 86], shadow paging [27, 53, 65],

and checkpointing [21, 43, 72, 82]. However, it is not easy to imple-

ment such mechanismsÐprogrammers need to have good knowl-

edge about both the requirements for recovery and the persistence

void btree_remove(node_t* node){
 TX_BEGIN{
 ... // remove a node
 if (!parent &&

D_RO(node)->n<BTREE_MIN)
 bree_rebalance(...);
 }TX_END
}
void btree_rebalance(
 node_t lsb, node_t node,
 node_t parent, int p){
 node_t* lsb=parent->slots[p-1];
 if(lsb && lsb->n > BTREE_MIN)
 rotate_left(lsb, node,parent,p);
}

void rotate_left(node_t lsb,
 node_t node,note_t parent,int p){
 ...
 TX_ADD(node);
 btree_insert(node,0,...);
 TX_ADD_FIELD(parent,items[p]);
 D_RW(parent)->items[p-1]=...;
 ...
}
void btree_insert(node_t node,...,int p){
 if (node->items[p].key){
 TX_ADD(node);
 memmove(&D_RW(node)->items[p + 1],
 &D_RW(node)->items[p],size);
 } ...
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Need to satisfy multiple conditions

Performance bug:
No need to log twice

Crash consistency bug:
Wrong index logged

Figure 1: A buggy PM-based B-Tree (Example 1).

guarantees of PM programming support. Next, we will use an ex-

ample to illustrate non-trivial bugs in PM programming.

2.2 Nontrivial Bugs in PM Programming

Example 1: A buggy B-Tree. Figure 1 (Example 1) shows a sim-

plified code snippet of a B-Tree that is implemented with PMDK’s

transaction library. The btree_remove() and btree_insert() pro-

cedures are wrapped inside a pair of TX_BEGIN and TX_END to

ensure a consistent recovery after failure. Within the procedure,

TX_ADD() is used to make a backup of the persistent data before it is

modified. B-Tree is a commonly-used structure for key-value stores,

where each node contains a number of keys. To remove an existing

key from a B-Tree, the program first calls btree_remove(). After

removal, if the number of keys (n) becomes less than BTREE_MIN, it

rebalances the tree by calling btree_rebalance() (line 4-6), which

left-rotates the modified node if the number of keys in its left sibling

(lsb) exceeds BTREE_MIN (line 13-14). During the rotation process,

rotate_left() calls the insertion function btree_insert() (line

18), which then checks the validity of the key (line 23), and performs

the rotation (line 28-29). Finally, after insertion, rotate_left()

updates items in its parent node (line 21-22).

Although this example seems to be correct as the whole pro-

cedure is wrapped in a transaction, there are two bugs. The first

one is a crash consistency bug, where the program updates the

(p-1)-th item (line 22) but logs the p-th item by mistake (line 21).

In case of a failure at line 22, the item being modified can be lost

as it has not been backed up by the log. The second one is a perfor-

mance bug, where rotate_left() and btree_insert() attempt

to log the same node twice (line 19 and 27), leading to unnecessary

performance degradation.

These bugs in Example 1 have one major similarity that is they

cannot be directly observed by programmers. A crash consistency

bug, such as incorrect ordering or backup, does to affect the current

volatile state, thus is not visible until a failure occurs during the

buggy procedure. And, a performance bug, such as using excessive

ordering or unnecessary logging, does not affect the ongoing ex-

ecution. To make these bugs visible to programmers, there have

been tools tailored for PM programming [10, 57, 58, 66]. These tools

keep track of PM operations at runtime, and then detect violations

against the crash consistency guarantees. These tools have the ca-

pability of detecting the bugs in Example 1. Nonetheless, they all

require the buggy program path to be executed in order to detect the

violations. In Example 1, the program needs to satisfy two if condi-

tions to detect the crash consistency bug (line 21-22). Even harder,

triggering the performance bug (line 27) requires satisfying all three

489

ASPLOS ’21, April 19–23, 2021, Virtual, USA Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan

Test Cases

Mutation

Execution

Seed
(Initial)

Test Case
Selector

Stat Monitor
(e.g., branch coverage)

Mutated Test CasesFavored Test Cases

Statistics

Figure 2: A general fuzzing procedure.

int main(...){
 ...
 db=pmemobj_open(path);
 recover(db);
 PMReconstruct(db);
 string cmd=parser();
 if(cmd==“put”)
 tablePut(...);
 else if(cmd==“get”)
 tableGet(...);
 ...
}
void recover(db_t *db){
 db->verifyCheckSum();
 db->applyLogs();
 ...
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

entry_t *GetEntry(int key){
 for(auto& it : table){
 int index=it.lookup(key);
 ...
 }
 return ...
}
void PutEntry(int key, item_t val){
 int index=hash(key);
 //called within a transaction
 TX_ADD_FIELD(D_RO(pm)->table[index], en);
 if(D_RW(pm)->ptable[index].empty()){
 D_RW(pm)->ptable[index]->en=newEntry(val);
 }else{
 D_RW(pm)->ptable[index]->tail->en=newEntry(val));
 } ...
}

Lookup from volatile table

Updates to persistent table

Recover persistent state

Load PM image

Crash consistency bug: Tail was not backed up

PM Code Regions

Figure 3: A buggy PM-based database (Example 2).

if conditions. Therefore, a test case generator becomes a necessity

to cover such nontrivial program paths. Next, we introduce fuzzing,

a widely-used technique for test case generation.

2.3 Requirements for Fuzzing PM Programs

A test case generator for testing PM programs should avoid in-

troducing additional burdens on programmers, given the already

complicated nature of PM programming. Fuzzing is a well-known

technique that automatically generates test cases while minimizing

programmers’ effort [8, 18, 20, 24, 91]. Figure 2 shows a typical pro-

cedure of fuzzingÐa fuzzer takes a set of initial test cases (or seeds),

performs mutation on those test cases, executes the target program,

monitors the execution statistics, and finally uses the statistics (e.g.,

branch coverage) to select high-value test cases. These high-value

test cases will then be used in the next iteration of fuzzing. Using

a fuzzer, the if-conditions in Figure 1 (Example 1) are likely to be

covered. However, we identify that there are additional needs from

PM programs that conventional fuzzers do not meet. Next, we pro-

vide another example of a PM crash consistency bug to motivate

the new requirements.

Example 2: A buggy PM database. Figure 3 (Example 2) is

a simplified example of a database based on the PMDK transac-

tion [32]. It maintains the persistent data in PM and buffers a volatile

table in DRAM for faster lookup, similar to the PM-based Redis [39].

During execution, the main() function first loads the existing per-

sistent data that were stored on PM, which we refer to as a PM

image (line 3), calls recover() to restore the persistence state (e.g.,

recover from a previous failure), and then loads the PM structures to

the volatile table. Upon requests, the database calls corresponding

functions, such as GetEntry() and PutEntry(). GetEntry() (line

18) looks up the key in the volatile table, and PutEntry() (line 25)

updates the key-value pair in the persistent ptable. In this exam-

ple, there is a crash consistency bug in PutEntry(). A new entry is

appended to the tail of the indexed list in ptable when the list is

not empty (line 32), whereas the previous log operation only covers

the first item in the list (line 28). Thus, in case a failure happens at

line 32, the update to tail can be interrupted and remains in an

Figure 4: PM program execution procedures that generate

(a) a normal image, and (b) a crash image.

Figure 5: (a) An invalid image produced by direct mutation,

(b) a normal image produced by program logic, and (c) a

crash image produced by program logic.

Figure 6: Persistent data layout in (a) an Ext2 file system [9],

(b) a PM-based B-Tree, and (c) a PM-based database.

inconsistent state. Next, we summarize the additional requirements

that traditional fuzzers need to expose PM bugs.

Requirement 1: PM images as input. A PM program typically

takes PM image(s) as part of the input to maintain their persistent

state, as demonstrated by the procedure in Figure 4a, and the main()

function of Figure 3 (Example 2). Prior works have shown that the

procedure that loads PM images can be buggy [57]. Therefore, a

fuzzer for PM programs needs to generate not only the basic input

commands but also PM images for testing. More importantly, the

generated PM image is required to be valid, so that the program can

execute a useful path, without failing basic image checks or trig-

gering exceptions. However, directly fuzzing PM images through

mutation is challengingÐthe search space of a PM image (tens of

MBs) is huge, and it is hard to construct a valid PM image. Fig-

ure 5a demonstrates a PM image of a database being randomly

mutated, where the mutation lies in the middle of the key and its

entry pointer. Execution using this invalid image is likely to abort

due to segmentation faults. Recent fuzzers have proposed to mutate

file system images [44, 88] based on the preknowledge of the data

layout of file systems. Figure 6a shows the simplified layout of an

Ext2 file system [9], where the sizes and locations are known based

on the Ext2 format. In comparison, PM programs tend to customize

the way they manage persistent data. Figure 6b demonstrates the

490

PMFuzz: Test Case Generation for Persistent Memory Programs ASPLOS ’21, April 19–23, 2021, Virtual, USA

layout of Example 1, where the structures of tree nodes and logs

are seemly rigid but do not follow a specific formatÐthe nodes

and undo-log entries are all allocated in the image at runtime. Fig-

ure 6c shows the layout of Example 2. Despite the use of a similar

undo-logging mechanism, the data layout still differs from that of

Example 1, due to their fundamental algorithmic differences.

Requirement 2: Crash images as input. PM programs are

expected to be recoverable from unexpected failures. Thus, they

may also load PM images caused by failures. For clarity, we refer

to a PM image that is an outcome of an uninterrupted execution as

a normal image, and an image that results after a failure as a crash

image. Figure 4b shows a procedure, where a PM program takes

an existing PM image and executes a series of input commands.

During execution, a failure occurs and results in a crash image.

After the program restarts after the failure, it needs to execute the

recovery procedure. For example, Figure 3 (Example 2) validates the

image checksum (line 14) and rolls back the prior updates using the

logged data (line 15). In order to detect bugs during the recovery

procedure, a crash image is also a necessity for the input test case.

However, failures may happen at any point during execution, and

therefore, can lead to an infinite number of crash images.

Requirement 3: Targeting PM operations. The crash consis-

tency bugs and performance bugs are caused by PM operations,

such as PM writes that modifies the state, and PM reads that loads

an existing state [57]. Therefore, test case generation should be fo-

cused on program paths that perform PM operations. In real-world

PM programs, such as database applications, there are both volatile

and persistent code regions. In Figure 3 (Example 2), only a fraction

of the code is performing PM operations, as marked by the green

boxes. As such, a fuzzer should ideally focus on the interesting

paths with PM operations. However, traditional coverage metrics,

such as branch coverage, which are widely adopted by traditional

fuzzers do not target these PM-related paths.

3 HIGH-LEVEL DESIGN OF PMFUZZ

So far, we have described the new requirements for fuzzing PM

programs. In this work, we propose PMFuzz, a fuzzer that aims to

efficiently generate test cases for debugging PM programs. Next,

we discuss the challenges and our high-level design.

3.1 Normal PM Image Generation

Challenge. PM programs require that a fuzzer generates valid

PM images to explore useful program paths. Conventional fuzzers

are only capable of fuzzing small inputs thus do not meet this

requirement. Even though file system fuzzers target large file system

images, they require a well-formulated rule and image layout [44,

88]. In comparison, a PM image is not only large (e.g., tens of MBs)

but also highly customized. Thus, fuzzing PM images is beyond the

capability of existing fuzzers. Therefore, the first challenge is how

can PMFuzz efficiently generate PM images?

Observation. As the data layout of a PM program can be largely

customized, directly generating a valid PM image with permutation

is hard. However, the outcome of the program logic itself always

results in a valid persistent state. As Figure 4 demonstrates, the

void updateHashTable(int key, int new_val){
 //Details removed for demonstration
 backup.key=key;
 backup.val=HashTable.find(key)->val;
 persist_barrier();
 backup.valid=1;
 persist_barrier();
 HashTable.find(key)->val=new_val;
 persist_barrier();
 backup.valid=0;
 persist_barrier();
}

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20
21
22
23

void Recover(){
 if(backup.valid){
 HashTable.find(key)->val
 =backup.val;
 ...
 HashTable.verifyCksum();
 }else{
 HashTable.verifyCksum();
 ...
 }
}

Control-flow depends on key variables

Case 1

Case 2

Figure 7: Example of control-flow dependency between fail-

ures and the recovery procedure.

PM program incrementally mutates the PM image with input com-

mands. Therefore, instead of directly fuzzing the PM image, a more

effective alternative is to indirectly fuzz the input commands, which

in turn will mutate the image from one valid state to another.

Solution. Based on this observation, our key idea is to fuzz

the input commands and reuse the program logic to generate a

PM image that is guaranteed to be a valid persistent state. At the

high-level, the procedure of fuzzing PM images follows these steps:

(1) Mutate input commands, (2) perform execution on top of an

existing PM image, (3) collect the output PM image, and (4) reuse the

generated PM images and repeat these steps. As PMFuzz continues

to recursively operate on existing PM images, a thorough mutation

on the PM image will eventually be done by the program logic

itself. Figure 5b demonstrates that executing an update command

creates an output PM image that has a valid mutation on the value

of łEntry pointerž. Thus we conclude that leveraging program logic

can efficiently generate valid PM images.

3.2 Crash Image Generation

Challenge. As PM programs are expected to recover from fail-

ures, they may also take crash images as the input. However, there

can be an infinite number of crash images because failure can hap-

pen at any point in the program. Thus, the second challenge is how

PMFuzz can generate crash images that are most effective?

Observation. Figure 7 shows an example of updating a hash

table using low-level PM primitives. The program first backs up the

existing key and value (line 3-4), sets the backup to be valid (line

6), performs the in-place update in the destination entry (line 8),

and finally invalidates the backup (line 10). In case this procedure is

interrupted by a failure, the program has a recovery() function. If

the backup is valid (line 14), it rolls back the updates (line 15-16) and

then verifies the checksum of the hash table (line 18). Otherwise,

it verifies the checksum directly (line 20). Given a crash image

that is generated during the procedure of updateHashTable(), the

two paths during recovery() (as indicated by Case 1 and 2) only

depend on the value of backup.valid. Therefore, even though

a failure can happen at any point during the execution, not all

resulting crash images are important for the coverage.

Solution. Inspired by the prior works that model the relation-

ship between PM program recovery and failures [11, 57, 59, 60], we

model the relationship between the program path during recovery

and the prior procedure during the normal execution as a control-

flow dependency. The significance of a crash image boils down to

whether it can lead to a persistent state that affects the control-flow

in the procedure after failure. Updates that can lead to a different

491

ASPLOS ’21, April 19–23, 2021, Virtual, USA Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan

control-flow are typically applied to key variables that determine

the consistency state. For example, the update to backup.valid in

Figure 7 alters the consistency state. Other examples include commit

bits in undo/redo logs, and timestamps in checkpointing mecha-

nisms. Usually, updates to such a commit variable are wrapped

with ordering points (e.g., using a persist_barrier()), such that

the commit variable always persists after the prior PM updates but

before the successive ones.

Following this observation, our approach that reduces the num-

ber of crash images is two-fold. First, PMFuzz focuses on placing

failures at ordering points to reduce the number of failure images.

Second, PMFuzz also places additional failure points probabilis-

tically, at a configurable rate. This way, even if the program is

completely buggy, i.e., with a large number of misplaced ordering

points, PMFuzz will still generate failure images for debugging. In

both cases, crash images are generated by interrupting the execu-

tion of input commands. Therefore, all crash images maintain valid

persistent states of the program. Back to the example in Figure 5,

by placing a failure at the point where an undo log of the entry

has been persisted but the item has not been updated, the output

image will contain the old value in the łLog entryž of the crash

image. During the recovery procedure, the program will use this

łLog entryž to reconstruct the table.

3.3 Coverage for PM Path

Challenge. PM programs can contain various procedures but

only those with PM operations can lead to crash consistency and

performance bugs. The third challenge is how can PMFuzz efficiently

generate test cases that target PM operations?

Observation. As prior testing works for PM programs [10, 49,

57, 58] have shown, crash consistency bugs (and also performance

bugs) occur due to inappropriate PM accesses. Therefore, PMFuzz

should target code regions that perform PM operations, e.g., PM

reads, writes, writeback/flush primitives, and fences. However, PM

reads andwrites cannot be easily distinguished from regular volatile

ones as they only differ in the address. Prior testing tools have been

using dynamic instrumentation to keep track of these operations at

the cost of tens- to hundreds-time overhead [10, 49, 57, 66]. As one

of the key design principles of fuzzing is to achieve high execution

efficiency, dynamic instrumentation is not a feasible choice. Despite

the difficulties, we find that it is not necessary to track at the in-

struction granularity; instead, accesses to PM are typically wrapped

with functions. As described in Section 2.1, PM libraries provide

methods, such as D_RW() and D_RO(), to obtain the pointer to a PM

object and to perform write/read accesses; they also provide other

methods, such as pmem_persist(), to write-back persistent data.

Therefore, the tracking granularity can be lifted to the function-

level to reduce the performance overhead.

Solution. Based on the two observations, our key idea is to

identify PM operations by tracking them at the granularity of PM

library functions. Having PM operations being tracked, we can

further design a PM-specific coverage metric to enable a targeted

fuzzing on the PM-related program paths (see Section 4.2 for details

about the mechanism). Next, we formally define the program path

that contains PM operations.

Figure 8: PM path examples (nodes in blue are PM nodes).

Testing
Tool

Annotation PM Path
Feedback

Bug Report

Input Commands
PM Image (normal/crash img.)

Test Case

PMFuzz
Compiler

PMFuzz
Generator

Executable with
Instrumented PM Operations

Figure 9: High-level workflow of PMFuzz.

• Control-flow Graph (CFG). A CFG of a program procedure is

a directed graph represented by a tuple of ⟨𝑁, 𝐸⟩; 𝑁 is the set of

nodes, where each node 𝑛 represents unique program statement;

𝐸 ⊂ 𝑁 × 𝑁 is the set of edges, where an edge 𝑒𝑖 𝑗 represents

execution flow between nodes 𝑛𝑖 and 𝑛 𝑗 .

• Program Path (𝜋). A program path in a CFG is a sequence of

nodes 𝜋 = ⟨𝑛0, 𝑛1, ...⟩, such that there is an edge along the CFG

between two consecutive nodes of the sequence.

• PM Node (𝑝). A CFG node 𝑝 ∈ 𝑁 is a PM node if it performs at

least one PM operation.

• PM Path (𝜋𝑃𝑀). A PM path is a PM node sequence 𝜋𝑃𝑀 =

⟨𝑝0, 𝑝1, ...⟩, such that, there is at least one edge along the CFG

between two consecutive PM nodes in the sequence.

Figure 8 shows two example CFGs, where nodes in blue are PM

nodes that have PM operations. Based on the definitions above,

in the CFG of Figure 8a, the path of Node 1-2-6 is not a PM path

due to the absence of PM operations, but the path of Node 1-3-5-6

does as it contains an edge between PM Node 3 and 5. In Figure 8b,

the path of Node 7-8-11 and Node 7-9-11 are regarded as the same

PM path (marked as PM Path I), because they share the same PM

nodes. In comparison, the path of Node 7-9-10-11 is unique because

it contains a new PM Node, Node 10 (marked as PM Path II). By

tracking PM paths, PMFuzz prioritizes test cases that explore new

PM paths. Therefore, PMFuzz can more efficiently generate test

cases for detecting crash consistency and performance bugs.

4 IMPLEMENTATION OF PMFUZZ

In this section, we first present an overview of PMFuzz’s workflow

and then describe the details about the implementation.

4.1 Overview

PMFuzz is developed on top of a well-known fuzzer AFL++ [20]. It

generates test cases to cover crash consistency and performance

bugs in PM programs. Figure 9 shows the high-level workflow.

First, PMFuzz compiler instruments the source code to keep track

of PM operations (step ➊ and ➋). Then, PMFuzz takes the compiled

program and performs fuzzing. The fuzzing procedure executes

multiple instances of the PM program for better efficiency. During

the execution of each program instance, PMFuzz monitors the cov-

erage of the PM path and provides feedback to the fuzzing logic

such that it can target PM-related operations (step ➌) that are most

492

PMFuzz: Test Case Generation for Persistent Memory Programs ASPLOS ’21, April 19–23, 2021, Virtual, USA

PM Counter-Map
1

void btreeSplitNode(...){
 for(int i=c; i<BTREE_ORDER; ++i){
 if(i!=BTREE_ORDER-1){
 D_RW(right)->items[...]=...
 D_RW(node)->items[i].key=0;
 D_RW(node)->items[i].value=NULL;
 }
 D_RW(right)->slots[i - c]=...
 D_RW(node)->slots[i]=NULL;
 } //loop end
...

1 1 2
BTREE_ORDER=4
c=2

1
2
3
4
5
6
7
8
9
10
11

PM Operation Transitions:
(Mapped to random indices)

(a) (b)

2

Figure 10: (a) Code instrumentation, and (b) the correspond-

ing state of the PM counter-map for tracking PMoperations.

critical to crash consistency bugs. After completing the execution of

an instance, it saves the generated test case if it has explored a new

PM path (step➍). Each test case contains input commands and a PM

image (both normal and crash images). Finally, PMFuzz sends the

test cases to a testing tool (e.g., XFDetector [57] or Pmemcheck [10])

for bug detection (step ➎).

4.2 PM Operation Tracking

PMFuzz focuses on generating test cases that cover program paths

that contain PM operations, such as read/write accesses, and write-

back and fence primitives. As Section 3.3 has introduced, PMFuzz

tracks these operations at the granularity of PM library functions.

To enable this tracking, PMFuzz first performs static instrumenta-

tion using PMFuzz’s compiler pass (based on LLVM [50]) and then

tracks them dynamically during runtime. Next, we describe these

two steps in detail.

(1) Static Instrumentation. PMFuzz tracks PM operations at

function-granularity. We take an approach similar to Intel’s Val-

grind tool, Pmemcheck [10] and place PM operation hints inside

the PMDK library. As programmers are typically agnostic about

the low-level library implementation, this approach does not re-

quire any modification to programmers’ application code. More

specifically, PMFuzz tracks libpmem [34] functions that perform

low-level PM operations, as well as libpmemobj [35] functions that

provide the transaction interface. We also develop a compiler pass

to support custom PM libraries. Users only need to annotate the

declaration of each PM-operation function, and the compiler pass

will automatically instrument the application code. Then, PMFuzz

compiles the PM program and inserts a tracking function before

each PM operation (i.e., library function’s call site). Each tracking

function is associated with a unique ID that marks its PM operation.

Figure 10a demonstrates a simplified btreeSplitNode() function

that highlights five PM operations, and marks their IDs with circled-

letters. Next, we describe how PMFuzz keeps track of the path at

runtime using the unique ID of PM operations.

(2) Dynamic Tracking. A PM path consists of a series of transi-

tions between PM operations. Inspired by the way AFL [91] tracks

branches, PMFuzz encodes the transition between two PM oper-

ations based on their unique IDs, and updates a PM counter-map

according to the encoded value of this transition. Algorithm 1

demonstrates the transition encoding and PM counter-map update.

First, the tracking mechanism reads the current PM operation’s

ID (curID), which has been assigned during compile-time (line 3).

Second, it encodes the transition from the previous PM operation

(with prevID) to the current one by XORing the two IDs (line 4).

Algorithm 1: Update to PM counter-map

1 begin updatePMCounterMap(Op,PMCounterMap)

2 if Op ∈ PMOps then // When Op is a PM operation

3 curID = Op .ID // Get ID of the current OP

4 loc = curID ⊕ prevID // Encode transitions between OPs

5 PMCounterMap [loc] + + // Increment counter

6 prevID = curID ≫ 1 // Right-shift one bit to track direction

7 return PMCounterMap

Algorithm 2: PM path prioritization

1 begin PMPathFeedback(TestCase)

2 foreach loc ∈ PMCounterMap do

3 if unseen (PMCounterMap [loc]) then

4 Favored = 2 // High priority

5 else if diffCounter (PMCounterMap [loc]) then

6 Favored = 1 // Medium priority

7 else

8 Favored = 0 // Low priority

9 TestCase .Favored = Max (Favored,TestCase .Favored)

10 return TestCase

This way, a transition is encoded as an ID that serves as the index

(loc) to a PM counter-map. The counter indicates the number of

visits of this transition, as every visit of this transition increments

this counter value by 1 (line 5). For lower storage overhead, each

counter value is encoded with an 8-bit integer. Third, to preserve

the direction of this transition, the tracking mechanism right-shifts

the curID by 1 bit before moving toward the next PM operation

(line 6). Figure 10b shows the state of a PM counter-map after

btreeSplitNode() completes the for-loop (line 2-10), using input

arguments listed in the text box. Next, we describe how PMFuzz’s

fuzzing logic monitors the statistics of the PM path.

4.3 Fuzzing Feedback Logic

The core fuzzing algorithm of PMFuzz provides feedback for future

test case generation in order to optimize PM path coverage based

on the statistics. As PMFuzz is built on top of AFL++ [20], we take

a similar approach as AFL++, where we prioritize branch coverage,

but also integrate an additional targeted fuzzing algorithm for PM

operations. Algorithm 2 presents the prioritization algorithm of

PMFuzz, which examines each location in the PM counter-map and

sets the Favored value of the corresponding test case. Test cases

with unseen PM counter-map locations are set as high-priority,

those with significantly different counter values are set as medium-

priority, and the remaining ones that are identical or with minor

counter value differences are treated as low-priority. After each

iteration of fuzzing, PMFuzz discards low-priority cases unless

AFL++’s branch coverage logic favors them. In the next iteration of

fuzzing, test cases with higher priority are more likely to be mutated

to generate new test cases. This algorithm is effective but requires

zero-randomness during execution, i.e., the same test case always

produces the same path and PM image. Otherwise, the feedback

on PM path coverage is unstable and the fuzzing outcomes are not

reproducible. Next, we describe the derandomization approach.

493

ASPLOS ’21, April 19–23, 2021, Virtual, USA Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan

Annotated
Program

Input Commands
Crash Image

Normal Image

New PM Path?

PM Image

PM Path

Input
Command

Fuzzing

Input Commands
Image

Failure Points
Duplicate?

N
XFDetector Result

Execution Failures
Yes

Input Command + PM Image

Execution
(+ Path Tracking)

With Failure

No Failure

PM Image
Reduction

Figure 11: Fuzzing procedure of PMFuzz.

4.4 Execution Derandomization

As stated above, we notice that PM programs generally have non-

deterministic execution due to three major sources of randomness.

PMFuzz mitigates the randomness in the following approaches.

(1) UUID of PM Images. Each PM image created by the PMDK

library [32] is associated with a universally unique identifier (UUID).

The UUID is randomly generated during the image creation time.

Therefore, it is hard to determine whether two PM images are

generated from the same input or not, as the UUID in each PM image

is always unique. We eliminate this randomness by overloading

the UUID assignment function in PMDK (also extensible to other

libraries) with our version that sets the UUID to a constant value.

(2) AddressRandomization. The address randomizationmech-

anism for both volatile and persistent addresses is another source of

randomness. First, volatile addresses are randomized by the address

space layout randomization (ASLR) technique. Because PM images

may keep these random volatile pointers for convenience, we dis-

able ASLR in the Linux kernel [7]. This method makes sure that

the volatile pointers would not introduce randomness to PM im-

ages. Second, persistent addresses are randomized when the PMDK

library maps a PM image to the virtual address space. We deran-

domize the persistent addresses by setting PMDK’s environment

variable PMEM_MMAP_HINT that forces the PM image to be mapped

to the same virtual address every time it executes [34].

(3) External Randomness. Not only PM programs but their

dependent external libraries also use time-dependent or other non-

deterministic random number generators. Due to time-dependent

randomness, the same input test case can lead to different execution

paths. We remove this source of randomness by loading the Preeny

library [76] before fuzzing. Preeny overwrites the calls to random

number generators using its derand module, making sure that the

random numbers remain the same in each run.

4.5 Detailed Fuzzing Procedure

Figure 11 demonstrates the fuzzing procedure. First, PMFuzz spawns

several instances of the annotated PM program with seed test cases

(step ➊). For each instance, it tracks the PM path at runtime. Upon

observing a new PM path, it saves this test case for further PM

image generation, and provides positive feedback to the input com-

mand fuzzing logic as described in Section 4.3 (step ➋). In the PM

image generation procedure, PMFuzz generates two types of PM

images: normal images and crash images (step ➌). A crash image is

generated by placing failures at each ordering point and additional

failures at random locations (Section 3.2); a normal image is the

final outcome without any failure during the procedure. Then, the

Figure 12: Tree of PM images and input commands.

generated images go through a reduction procedure that eliminates

any images that are identical to the previously generated ones

(step ➍). The derandomization methods introduced in Section 4.4

ensure that the same input test case always produces the same im-

age. PMFuzz performs image reduction by looking up the image’s

hash value (SHA-256) in a dictionary that keeps the hash values

of all prior images. Finally, both the newly generated commands

and the resulting PM images will be reused as inputs in the next

iteration of fuzzing (step ➎).

4.6 Test Case Management

During fuzzing, test cases (input commands + a PM image) are

generated recursively, by mutating prior test cases. PMFuzz ef-

ficiently manages the test cases by leveraging the dependencies

among test cases. Figure 12 demonstrates the dependencies, where

each node is a PM image (the root is an empty image), and each

edge represents the input command + failure location that are used

to mutate the image. The image management method serves three

main purposes. First, it makes the fuzzing procedure reproducible,

as each test case and its resulting PM image can be tracked by the

dependency. To reproduce a particular test case, the user can simply

execute the input commands on top of its parent image. Second, test

case tracking allows PMFuzz to incrementally generate test cases,

by loading an existing PM image and executing a set of mutated

input commands (the execution time is limited to 150 ms in this

design), as Section 4.5 has shown. Finally, the testing tool attached

to PMFuzz (e.g., XFDetector [57] and Pmemcheck [10]) can also

avoid executing redundant test cases. The testing tool only needs

to execute a minimum set of test cases that cover new PM paths,

without needing to start from prior test cases that contain the root

image. For example, the test tool starts from test cases that contain

the empty root image. Thus, to test the execution that produces

image D, the testing tool only needs to execute Input 4 on top

of image B, as the execution that takes its predecessor (Input 1 +

Root) has been covered by the previous testing iterations.

4.7 Optimization Strategies

In this section, we introduce three major optimizations in PMFuzz

that improve the fuzzing efficiency.

(1) System Call Reduction. The fuzzing procedure takes mul-

tiple system calls when opening and closing PM images. The sys-

tem call overhead can be further amplified when PMFuzz executes

multiple fuzzing instances simultaneously. AFL++ comes with an

optimization that creates multiple fuzzing instances using its fork

server’s copy-on-write mechanism (via fork()). It would signif-

icantly reduce the system call overhead of loading PM images if

we can also copy-on-write persistent data on PM images. However,

494

PMFuzz: Test Case Generation for Persistent Memory Programs ASPLOS ’21, April 19–23, 2021, Virtual, USA

Table 1: System configuration.

CPU Intel Xeon, 2.1GHz, 20 cores

Memory
4×16GB DDR4, 2666MT/s

2×128GB Intel DCPMM, Interleaved, App Direct Mode

SSD 2TB, NVMe, PCI-E 3.0 ×4

OS Ubuntu 18.04, Linux kernel v5.4

Env. AFL++-2.63, LLVM-9, Clang-9, PMDK-1.8, Pin-3.13

this method does not apply to PM images because they are memory-

mapped (i.e., a file mapped to the program’s virtual address space).

To take advantage of the fork server in AFL++, when the PM pro-

gram is opening a PM image, we first overload the mmap() function

with our version that copies data from PM to a location on the

heap of the program. Second, we use AFL++’s fork server to create

multiple fuzzing instances, while carrying the persistent data that

have been loaded from the PM image to the heap. Finally, before the

PM program closes the image, we overload the munmap() function

and save the updates back to the PM image as long as the execution

has discovered new PM paths (based on the method in Section 4.3).

We validate this design to ensure that this optimization does not

change the behavior by comparing the PM trace collected before

and after applying this optimization (using Intel’s Pin tool [61]).

(2) Test Case Storage. Fuzzing is a repeated process that gener-

ates a large number of test cases. Therefore, a PM device alone may

not be sufficient to store all test cases. In our experiment, PMFuzz

generated approximately 1.5 TB of data during a 4-hour period

of fuzzing, primarily due to the PM images. Although PM images

occupy a significant amount of space, we observe that the fuzzing

procedure is periodicalÐPMFuzz takes a PM image as the input,

spawns multiple fuzzer instances, saves the generated images, and

starts over again by taking the newly-generated PM images as

inputs. In each iteration of fuzzing, only a small fraction of PM

images will be taken as inputs. And, the generated PM images will

not be used until the next iteration begins. Based on this observa-

tion, PMFuzz moves the generated test cases from the PM device to

a hard drive (e.g., SSD) and compresses the generated PM images

(using the LZ77 [93] algorithm). PMFuzz decompresses and moves

an image back to PM, only when it is selected as the input. This

optimization effectively reduces the storage requirement.

5 EVALUATION

5.1 Methodology

System Configuration. We evaluate PMFuzz in a system with

Intel’s Cascade Lake processors andDCPersistentMemoryModules

(DCPMMs), as listed in Table 1. The PM devices (i.e., DCPMMs)

are configured in the App Direct Mode and mounted with the DAX

option to bypass OS indirections.

PM Programs. To evaluate PMFuzz, we choose PM programs

(listed in Table 3) built on top of Intel’s PMDK (v1.8) [32] library,

including simple key-value store structures [33] and real-world

databases [39, 51], similar to those tested by prior works [10, 57,

58, 66]. We use PMDK’s mapcli [36] to drive the key-value stores,

and use Preeny [76] to convert the socket-based communication

interface of the databases to a command-line-based version.

Table 2: Comparison points

Input Fuzz Img Fuzz PM Path Opt Sys Opt

PMFuzz (All Feat.) Yes Yes (Indirect) Yes Yes

PMFuzz w/o SysOpt Yes Yes (Indirect) Yes No

AFL++ Yes No No No

AFL++ w/ SysOpt Yes No No Yes

AFL++ w/ ImgFuzz No Yes (Direct) No No

Comparison Points. PMFuzz is developed on top of AFL++

(v2.63 [1]) with the integration of state-of-the-art fuzzing tech-

niques, including LAF-Intel [40] and AFL-Sensitive [80]. Therefore,

we take AFL++ as the main baseline fuzzer. To better demonstrate

the impact of each PMFuzz feature, we develop other alternative

designs that are based on AFL++ and PMFuzz (listed in Table 2).

The details about the features are described below.

• Input Fuzz (Input Fuzzing) is a feature that mutates the input

commands.

• Img Fuzz (PM Image Fuzzing) is a feature that mutates the PM

image. The PM image is indirectly mutated using the program

itself in the comparison point of PMFuzz but is directly mutated

in AFL++ w/ ImgFuzz. As the baseline AFL++ does not support

the mutation of both the image and the command input at the

same time, we only enable image fuzzing in AFL++ w/ ImgFuzz.

• PM Path Opt (PM Path Optimization) is a feature that enables

the targeted fuzzing on PM paths (introduced in Section 4.3).

• Sys Opt (System-level Optimization) is a feature that reduces

the system call and storage overhead (introduced in Section 4.7).

Note that, in all comparison points, we enable the derandom-

ization techniques (described in Section 4.4) and use a list of basic

commands and a PM image as the seed test case for fuzzing.

Detection Tool. PMFuzz is a test case generator that provides

high-value test cases to the backend testing tools for PM programs.

We leverage themost recent PM testing work XFDetector [57] as the

testing tool attached to PMFuzz, which executes with PM programs

and detects crash consistency and performance bugs. In addition,

we use Intel’s Pmemcheck [10] to detect synthetic bugs within the

library (e.g., transaction, recovery, image creation, etc.).

Synthetic Bug Injection. To evaluate the effectiveness of test

cases generated by PMFuzz, we place synthetic bugs in PM pro-

grams and the PDMK library, similar to the method taken by prior

works [57, 58]. More specifically, we take the following approaches.

• Remove/misplace writebacks (flushes) and fences to break the

persistence requirement.

• Reorder PM writes that are originally ordered with write-backs

and fences, to break the ordering requirement.

• Remove/misplace backup function calls to corrupt data in

transaction-based programs.

• Place semantically incorrect code to cause incorrect recovery in

programs based on low-level primitives, such as setting a wrong

value to the commit variables.

5.2 PM Path Coverage

Figure 13 compares the number of unique PM paths covered by

PMFuzz and the comparison points during 4-hour fuzzing. We

summarize the results as the following points. (1) PMFuzz achieves

495

ASPLOS ’21, April 19–23, 2021, Virtual, USA Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan

PMFuzz PMFuzz w/o SysOpt AFL++ AFL++ w/ SysOpt AFL++ w/ ImgFuzz

0

500

1000

1500

2000
RB-Tree

0

1000

2000

3000
B-Tree

0

200

400

600

0:00
0:30

1:00
1:30

2:00
2:30

3:00
3:30

4:00

R-Tree

0

500

1000

1500

2000

0:00
0:30

1:00
1:30

2:00
2:30

3:00
3:30

4:00

Skip-List

0

500

1000

1500

2000

Hashmap-TX

N
u

m
b

er
 o

f
C

o
v

er
ed

 P
M

 P
a

th

0

500

1000

1500

2000

Hashmap-Atomic

0

30

60

90

120

0:00
0:30

1:00
1:30

2:00
2:30

3:00
3:30

4:00

Memcached

0

30

60

90

120

0:00
0:30

1:00
1:30

2:00
2:30

3:00
3:30

4:00

Redis

Duration of Fuzzing (H:MM)

Figure 13: PM path coverage

Table 3: Tested PM programs, and synthetic bug detection.

Program Name
#Synthetic

Bugs

#Covered by

AFL++ SysOpt

#Covered by

PMFuzz

S
im

p
le

K
V
-s
to
re B-Tree 17 13 17

RB-Tree 14 10 14

R-Tree 16 12 16

Skip-List 12 8 12

Hashmap-TX 21 16 21

Hashmap-Atomic 14 10 14

D
B Memcached 17 14 17

Redis 14 9 14

a significant increase in PM path coverage over AFL++ (Geo-mean

4.6×) because it efficiently mutates PM images, performs a targeted

fuzzing on PM path, and consumes a low system overhead. (2)

The PM path coverage is significantly lower without our system

optimizations (PMFuzz w/o SysOpt), demonstrating that the system-

level optimizations are essential to fuzzing PM programs. (3) AFL++

with system optimizations (AFL++ w/ SysOpt) outperforms AFL++

(Geo-mean 1.4×), but still cannot provide comparable coverage to

PMFuzz. (4) AFL++ with PM image fuzzing (AFL++ w/ ImgFuzz)

has poor coverage progress due to the large search space within

PM images. Finally, the two databases, Memcached and Redis have

fewer PM paths as compared to other key-value store structures.

The primary reason is that only a relatively small fraction of code

manages PM. Additionally, it takes much longer to execute them

due to their higher complexity.

5.3 Synthetic Bug Detection

Table 3 lists the number of synthetic bugs tested and detected

by PMFuzz. We compare PMFuzz with AFL++ w/ SysOpt in this

experiment, as this configuration performs the best among the

non-PMFuzz comparison points. We observe that PMFuzz gener-

ates test cases that detect all synthetic bugs, 1.4× over AFL++ w/

SysOpt, due to PMFuzz’s effective PM image generation (both nor-

mal and crash images) and the focus on PM paths. Worth pointing

out that the software development for PM is currently in an early

stage. Therefore, the existing workloads are relatively simple. We

PMEMoid create_hashmap(...) {
 ...
 D_RW(hashmap)->seed=seed;
 D_RW(hashmap)->fun=rand();
 D_RW(hashmap)->buckets=TX_ALLOC(...);
 ...
}

int hashmap_create(...){
 TX_BEGIN(pop) {
 TX_ADD_DIRECT(hashmap);
 hashmap=TX_NEW(...);
 ...
 create_hashmap(pop,*hashmap,seed);
 } TX_END
}

1
2
3
4
5
6
7
8

hashmap_creation is undone if failure happens
but is not called again after recovery.
The program is supposed to check the completion
of creation and redo in case of failure

9
10
11
12
13
14
15

(a)

int main(...){
 pmemobj_open(...);
 ... // TX auto-recover
 while(...) {
 // execute commands
 }
}
void hashmap_atomic_init(...){
 ...
 if(D_RO(hashmap)->count_dirty){
 ... // reset counter
}

1
2
3
4
5
6
7
8
9
10
11
12

(b)

Designed for transactions
that recover automatically

Hashmap-Atomic is built with
low-level primitives.
Need to call recovery function.

Figure 14: New crash consistency bugs found by PMFuzz: (a)

Bug 1 and (b) Bug 6.

expect that PMFuzz will show a more prominent advantage over

conventional fuzzers while testing future real-world PM programs.

5.4 New Real-world Bugs Found by PMFuzz

Despite the fact that prior works [10, 57, 58] have intensively tested

PM programs listed in Table 3, test cases generated by PMFuzz help

detect new real-world bugs.

New Crash Consistency Bugs

Bug 1-5: Figure 14a is a simplified code snippet from Hashmap-TX

(hashmap_tx.c:402), where create_hashmap uses a transaction

(line 2-7) to allocate space and initialize the hash table. PMFuzz

created two crash images before and within the allocation. When

taking the crash images for the next fuzzing iteration, both of them

report a segmentation fault when the program attempts to deref-

erence the pointer to hashmap. We found that hashmap_create is

called when starting with an empty PM image. In case the procedure

fails, the whole creation procedure is undone by the transaction,

leaving hashmap a NULL pointer. However, because the program

does not call hashmap_create again afterward, the following exe-

cution assumes a fully initialized hash table. Other 4 transactional

workloads, including B-Tree, RB-Tree, R-Tree, and Skip-List also

have similar bugs during initialization. Although the prior failure-

aware testing tool XFDetector [57] can detect this type of bugs with

496

PMFuzz: Test Case Generation for Persistent Memory Programs ASPLOS ’21, April 19–23, 2021, Virtual, USA

//rbtree_map just allocated with TX_ALLOC
int rbtree_map_insert(...){
 TX_BEGIN(pop){
 node n = TX_NEW(...);
 ...
 rbtree_map_insert_bst(map,n);
 ...
 while(D_RO(NODE_P(n))->color==RED){
 n = rbtree_map_recolor(...);
 }
 TX_SET(RB_FIRST(map),color,BLACK);
 }TX_END
}
void rbtee_map_insert_bst(...){
 node *dst = &RB_FIRST(map);
 ...
 TX_SET(n, ...);
}
tree_map_node rbtree_map_recolor(...){
 if (D_RO(uncle)->color == RED) {
 ...
 }else{
 if (NODE_IS(n, !c)) {
 n = NODE_P(n);
 rbtree_map_rotate(map, n, c);
 }
 TX_SET(NODE_P(n), color, BLACK);
 }
 ...
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

(c)

n is created with TX_NEW,
no need to log again

rbtree_map was just created with
TX_ALLOC, no need to log again

int pslab_create(...){
 pslab_pool = pmem_map_file(...);
 // Initialize PM
 ...
 pmem_memset_nodrain(pslab_pool,0...);
 ...
 PSLAB_WALK(fp) {
 pmem_memset_nodrain(fp,0,...);
 }
 pmem_persist(pslab_pool,length);
 // Commit updates
 pslab_pool->valid;
 pmem_member_persist(pslab_pool,valid);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

(a)

int hm_tx_create(...){
 TX_BEGIN(pop){
 TX_ADD_DIRECT(map);
 // map allocated with TX_ALLOC
 *map=TX_ZNEW(...);
 create_hashmap(pop,*map,seed);
 }
}
int create_hashmap(...) {
 ...
 // TX_ADD again
 TX_ADD(hashmap);
 D_RW(hashmap)->seed=seed;
 ...
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(b)

Parent of n added during
rotation. No need for TX_SET.

int btree_map_insert(...){
 ...
 TX_BEGIN(pop) {
 if (btree_map_is_empty(...)){
 ...
 }else{
 dest=btree_map_find_dest_node(...);
 ...
 btree_map_insert_item(dest,...);
 }
 } TX_END
 ...
}
void
btree_map_insert_item(dest,...){
 TX_ADD(node);
 ...
}

(d)

1
2
3
4
5
6
7

 8
9
10
11
12
13
14
15
16
17
18 node added when executing

btree_map_find_dest_node().
No need to add again.

Unnecessary flushes

Flush the whole pool

Figure 15: New performance bugs found by PMFuzz: (a) Bug

7, (b) Bug 8, (c) Bug 9ś11, and (d) Bug 12.

a simple test case of an empty PM image, due to the programmer’s

effort in understanding and annotating the source code, XFDetector

did not take the buggy code region into consideration.

Bug 6: Figure 14c shows two functions: main() is a driver pro-

gram for PMDK’s key-value store, Mapcli (mapcli:205). The other

function, hashmap_atomic_init(), is a procedure in Hashmap-

Atomic (hashmap_atomic.c:452). This code snippet has a crash

consistency bug as the main() function assumes all key-value store

structures can automatically recover using transactions, but over-

looks the low-level-primitive-based Hashmap-Atomic. Detecting

this bug requires a test case that has counter_dirty=true (line 10),

which is not easy to reach without a PM-specific test case generator.

New Performance Bugs

Bug 7: Figure 15a is a code snippet fromMemcached (pslab.c:317)

that creates a new pslab_pool. It starts with setting up a few meta-

data entries, and then flushes the whole pool. Finally, it sets a

valid bit (surrounded with ordering points) to commit the creation

(line 12). There are two redundant flushes (line 5 and 8) to the meta-

data as line 10 flushes the whole pslab_pool.

Bug 8: Figure 15b is a code snippet fromHashmap-TX that performs

insertion (hashmap_tx.c:90). Line 12 calls a redundant TX_ADD()

to back up a node that was previous allocated by TX_ZNEW() (line 5)

which has logged this object.

Bug 9ś11: Figure 15c is a code snippet from RB-Tree showing

the procedure of an insertion function that contains three perfor-

mance bugs (rbtree_map.c:215). Bug 9 is at line 17 that uses

TX_SET() to update the transaction-allocated node n, which intro-

duces a redundant log operation. Bug 10 is at line 11 that logs

void rbtree_map_rotate(...){
 tree_map_node child=D_RO(node)->slots[!c];
 ...
 TX_ADD(node);
 TX_ADD(child);
 ...
 D_RW(child)->slots[c]=node;
 D_RW(node)->parent=child;
}

1
2
3
4
5
6
7
8
9

node and child are swapped in this function

Backup node and child

Figure 16: An example from RB-Tree that demonstrates the

trade-off between programmability and performance.

RB_FIRST(map), which is the first entry in the tree, before perform-

ing the update. However, if the tree was just transaction-allocated

(comment at line 1), it is unnecessary to log it again. Bug 11 is

at line 27 that uses TX_SET() to update the parent of node n,

which has been backed up if rbtree_map_recolor() executes

rbtree_map_rotate() first. These performance bugs can be de-

tected by prior testing tools but require a specific test case to trigger.

In particular, Bug 9 can be detected only when testing a newly al-

located tree, and Bug 11 requires the if-condition at line 20 to be

false but line 23 to be true.

Bug 12: B-Tree has a performance bug as shown in Figure 15d

(btree_map.c:276). btree_map_insert() first finds the destina-

tion using btree_map_find_dest_node() and then inserts the

node using btree_map_insert_item(). TX_ADD() at line 16 is un-

necessary because node has been added when finding the destina-

tion (performs modification if tree-split is needed).

5.4.1 Efficiency of Test Case Generation. PMFuzz is also efficient

in generating test cases that detect those bugs. To cover Bug 1ś5,

7, and 8, PMFuzz only took 2 seconds of wall-clock timeÐas soon

as the first batch of test cases was generated, since those bugs are

located in the initialization step. For the rest of the bugs, Bug 9 and

10 are detected by the same case that took 91 seconds to generate;

Bug 6, 11, and 12 took 37, 77, and 88 seconds, respectively. The

fuzzing time was longer as covering those bugs requires relatively

more complex program paths.

6 DISCUSSION

In this section, we discuss the trade-offs between programmability

and performance, and then the potentials for extending PMFuzz to

accommodate other types of PM software systems.

Performance Bug Trade-offs. In the PMDK library, a redun-

dant TX_ADD() does not create additional logs. All logged locations

are kept track of using a range tree. Before creating a new log entry,

the library looks up the location in the range tree to make sure

it has not been logged before. With this mechanism, it is safe to

call TX_ADD() without checking conditions, such as whether the

object has been backed up or allocated with a transactional inter-

face. Nonetheless, the unnecessary range tree lookup can still lead

to performance penalties (e.g., Bug 9ś12). Therefore, we expect

highly-optimized PM programs to avoid these redundant calls to

transactional functions.

On the other hand, it is sometimes hard to completely remove

performance bugs. Figure 16 shows an example from RB-Tree

(rbtree_map.c:189), where rbtree_map_rotate() swaps node

with its child (line 7 and 8). If this function is called multiple times,

i.e., keep rotating until the tree is balanced, the two TX_ADD() calls

(line 3 and 4) can apply to objects that have already been logged.

497

ASPLOS ’21, April 19–23, 2021, Virtual, USA Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan

However, it is hard to tell whether or not a node has been logged as

the rotation depends on the value of each node. Instead, it is easier

to implement the rotation procedure by logging both nodes in the

beginning to avoid any crash consistency issues. Therefore, we do

not treat this type of issue as a performance bug.

Integration with PMKernel Modules. There have been works

that develop PM-optimized file systems for other programs to man-

age persistent data [17, 19, 42, 83, 86, 87]. These file systems are

implemented as kernel modules but different from conventional

file systems, they customize the persistent data, much like the user-

space PM programs. Thus, it is hard to directly mutate their PM

images. PMFuzz runs in the user-space as it is built uponAFL++ [20].

Nonetheless, it is possible to convert kernel-mode file systems into

user-space programs, using libraries such as Linux Kernel Library

(LKL) [69], or execute them on a virtual machine [18, 49]. This way,

PMFuzz can be integrated into such frameworks to generate test

cases for kernel-mode, PM-optimized file systems. We leave this

direction as a future work.

Multithreading. PM programs may run in multithreaded mode

for better throughput. PMFuzz is built on top of AFL++ which is

thread-safe. However, multithreading introduces randomness due to

various conditions of thread interleavings. As randomness prevents

the fuzzer from converging to good coverage, it is not recommended

to run PMFuzz with multithreading-enabled programs. On the other

hand, recent works have pointed out potential persistency issues

withmultithreaded execution [45, 81]. PMFuzz’s targeted fuzzing on

PM operations can generate high-value test cases for such scenarios,

with an extended focus on PM-related multithread synchronization

primitives. We leave test case generation for multithreaded PM

programs as a future work.

7 RELATED WORKS

In this section, we discuss the related works, including PM pro-

gramming and testing, and conventional fuzzing techniques.

PMHardware Systems. There have been a variety of hardware

solutions that improve the efficiency of PM systems. For example,

DPO [47], HOPS [62], and Themis [73] propose persistency models

that reduce the overhead of persistence by relaxing the ordering

requirements; Kiln [92], ThyNVM [72], ATOM [41], DudeTM [53],

and PiCL [64] provide hardware-based mechanisms to ensure crash

consistency; SCA [55], Osiris [90], Anubis [94], and Janus [56]

propose secured and crash-consistent PM. Due to the new hardware

primitives, these solutions may require additional programming

effort to convert existing programs. PMFuzz can generate test cases

to ensure correctness when adapting to a new PM platform.

PM Software Systems. PM allows for efficient access to persis-

tent data without OS indirections. To leverage such an opportunity,

there have been databases and key-value stores optimized for PM,

such as PM-optimized Redis [39] and Memcached [51], Echo [4],

NVMCached [84], and HiKV [85]. For better programmability, there

have also been PM libraries, such as PMDK [32], Mnemosyne [79],

NV-Heaps [15], and MOD [26]; and frameworks that convert legacy

code to a persistent version, such as Atlas [11], NVthreads [27],

iDO [54], and SFR [23]. Using the existing software interface, many

applications customize their PM management [3, 12, 13, 16, 28, 67,

78, 89]. Most of these software systems require persistent data to

be recoverable in case of a failure. PMFuzz can efficiently generate

test cases that assist testing tools to detect crash consistency bugs.

Testing for PM Software. There have been specialized testing

tools to help programmers detect crash consistency and perfor-

mance bugs in PM programs. For example, Intel has developed

Pmemcheck [10] and Persistence Inspector [66] on top of dynamic

instrumentation tools to trace PM operations and perform testing.

To improve testing efficiency and flexibility, PMTest [58] reduces

the overhead of dynamic instrumentation and supports a wider

range of PM software systems. XFDetector [57] further extends

the testing scope by reasoning about the program execution before

and after the failure. These tools make the bugs observable but

still require the buggy path to be executed. Therefore, in this work,

we develop PMFuzz to generate test cases that cover non-trivial

program paths. We have shown that using test cases generated

by PMFuzz, the existing tools (e.g., XFDetector [57] and Pmem-

check [10]) can detect more bugs. Another recent work, Agamotto

[63] performs symbolic execution instead of runtime testing. In

comparison, symbolic execution does not require test cases but

has limitations, such as handling external libraries, dynamically-

allocated memory, pointers, and loops.

Conventional Fuzzing Tools. Fuzzing is a well-known test

case generation approach that requires minimal programmer’s ef-

fort. Fuzzers typically prioritize conventional coverage metrics,

such as branch and statement coverage. For example, a widely-

used fuzzer, AFL, uses a genetic algorithm guided by branch cover-

age [91]. Recent fuzzers have adopted more advanced techniques,

such as program transformation [40, 52, 68], Markov model [8], and

machine learning [22, 70, 74, 75]. Although they are not tailored for

PM programs, PMFuzz can incorporate these algorithms for better

efficiency. Different from normal programs, file systems maintain

persistent data on hard drives. In order to efficiently generate test

cases, especially the file system image, there have been file system

fuzzers that directly mutate file system images based on their data

layout [44, 88]. Despite the similarities between file systems and PM

programs, PM programs feature a more customized and divergent

data layout, making it hard to directly generate valid PM images.

Therefore, PMFuzz takes a new method that reuses the program

logic to effectively generate valid, high-value PM images.

8 CONCLUSIONS

The use of persistent memory (PM) provides a substantial per-

formance improvement but introduces additional programming

complexity for the crash consistency guarantees. Prior works have

provided tools to detect crash consistency and performance bugs

in PM programs. However, detection of these bugs depends on test

cases that execute the buggy program paths. This work provides

PMFuzz, a fuzzer that efficiently generates test cases to detect non-

trivial bugs in PM programs, with minimum programmer effort.

Compared to the widely used fuzzer, AFL++, PMFuzz covers 4.6×

more PM-related paths. Further, PMFuzz has discovered 12 new

real-world bugs in PM programs that have already been intensively

tested by prior works.

498

PMFuzz: Test Case Generation for Persistent Memory Programs ASPLOS ’21, April 19–23, 2021, Virtual, USA

ACKNOWLEDGMENTS

We thank the anonymous reviewers, Dr. Daniel Lustig, and Prof.

Aasheesh Kolli for their valuable feedback. This project benefited

from the stimulating discussions with Korakit Seemakhupt, Akhil

Indurti, and other ShiftLab members. This work is supported by

the Google fellowship program, NSF awards CCF-1845893, CCF-

1822965, and CNS-2046066, and the SRC/DARPA Center for Re-

search on Intelligent Storage and Processing-in-memory (CRISP).

A ARTIFACT APPENDIX

A.1 Abstract

PMFuzz is a test case generator for PM programs, aiming to gener-

ate high-value test cases for PM testing tools. The generated test

cases include both program inputs and initial PM images (normal

images and crash images). The key idea of PMFuzz is to perform

a targeted fuzzing on PM-related code regions and generate valid

PM images by reusing the program logic. After generating the test

cases, PMFuzz feeds them to the PM program and uses existing

testing tools (XFDetector [57] and PMemcheck [10]) to detect crash

consistency and performance bugs.

A.2 Artifact Check-list (Meta-information)

• Program: PMFuzz

• Hardware: Intel Cascade Lake and DC Persistent Memory (or

emulated PM)

• Metrics: PM-path exploration and bug detection capability

• Output: Test cases for PM programs

• Experiments: (1) Compare the PM-path coverage of PMFuzz

and AFL++ baseline. (2) Reproduce new bugs covered by PMFuzz.

• How much disk space required (approximately): 1 TB

• How much time is needed to complete experiments: The

whole fuzzing procedure (including all the comparison points)

will take approximately 150 hours.

• Publicly available: Yes

• DOI: 10.5281/zenodo.4322285

A.3 Description

How to access.We maintain a GitHub repository at https://pmfuzz.

persistentmemory.org.

Hardware Dependencies.

• CPU: Intel Xeon Cascade Lake

• DRAM: 32 GB at least

• Persistent Memory: Intel DCPMM (or emulated PM)

• Hard Drive: 1 TB at least (to store all the compressed test cases)

Software Dependencies.

• Ubuntu 18.04 or higher

• NDCTL v64 or higher

• libunwind-dev and libini-config-dev

• Python 3.6, GNUMake >= 3.82, Bash >= 4.0, Linux Kernel ver-

sion 5.4, autoconf, bash-completions, Valgrind, PMemcheck, and

Anaconda

Data Sets.We tested the following workloads:

• PMDK libpmemobj examples: Btree, RTree, RBTree, Skip List,

Hashmap-Atomic, and Hashmap-TX [32]

• Redis (based on PMDK libpmemobj) [39]

• Memcached (based on PMDK libpmem) [51]

A.4 Installation

This artifact has the following structure:

• include/: Runtime for pmfuzz (libpmfuzz.so and tracing func-

tions for XFDetector).

• inputs/: Inputs used as seeds for the PMFuzz.

• scripts/: Installation and artifact-evaluation scripts.

• src/pmfuzz: Source for our test case generator.

• vendor/{pmdk,memcached,redis}: Workloads.

• vendor/{pmdk,memcached,redis}-buggy: Workloads with an-

notations for bug reproduction.

• vendor/xfdetector: Source for XFDetector testing tool.

• preeny: git submodule for Preeny tools [76].

Setup Environment. PMFuzz requires the environment variable

for PIN_ROOT and PMEM_MMAP_HINT are set before execution. To set

these variables, please execute the following commands:

export PIN_ROOT=<PMFuzz Root>/vendor/pin-3.13

export PMEM_MMAP_HINT=0x10000000000

A PM device (in App Direct mode) also needs to be mounted at

/mnt/pmem0 with the DAX option enabled. To do so, please execute

the following command:

sudo mount -o dax /dev/pmem0 /mnt/pmem0

It also requires disabling ASLR and core dump notifications. To

disable them, please execute the following commands (need to

execute again after power cycle):

echo core | sudo tee /proc/sys/kernel/core_pattern

echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

Setup Software Dependencies. To run PMFuzz, please make sure

that all the dependencies are installed (Section A.3). If some depen-

dencies are not met, our script can install them:

cd <PMFuzz Root>

./scripts/install-dependencies.sh

NOTE: This command will remove the existing libndctl and up-

date it to the required version.

Setup Python Environment. In addition to the basic dependencies,

PMFuzz requires a Python 3.6 environment, together with several

Python packages. To install them, please execute the following

commands:

pip3 install -r src/pmfuzz/requirements.txt

Install PMFuzz and PM Workloads. To download the correct

version of LLVM, compile PMFuzz’s runtime, AFL++, and all the

workloads, please execute the following commands (follow the

order in the listing):

make # Compiles our tool and PDMK

make redis memcached # Compiles other workloads

A.5 Experiment Workflow

The core functionality of PMFuzz is the fuzzing logic that generates

test cases for PM programs. To Run the workloads using PMFuzz,

please use the run-workloads.sh script which invokes PMFuzz

with the correct arguments to run a workload. The script takes

input in the following format:

499

https://pmfuzz.persistentmemory.org
https://pmfuzz.persistentmemory.org

ASPLOS ’21, April 19–23, 2021, Virtual, USA Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan

scripts/run-workloads.sh \

<workload name> <config name> <output dir>

These commands will run PMFuzz with the configuration used for

the evaluation section. The script by default uses 38 CPU cores. To

adjust that, please modify line 69-72 of the script. Note that the

design point that generates PM images through fuzzing is supported

with a separate script:

scripts/run-imgfuzz.sh <workload> <output dir>

For example, to run PMDK’s btree workload in the baseline config-

uration, run the following command:

scripts/run-workloads.sh btree baseline /tmp/

Running this command will create the directory

/tmp/btree,baseline with all generated test cases and images.

A.6 Evaluation and Expected Result

The main evaluation includes the performance evaluation (Sec-

tion A.6) that compares the PM path coverage (defined in Sec-

tion 3.3), and reproduction of the new real-world bugs found using

our generated test cases (Section A.6).

Performance Evaluation. Considering the execution time, it is

recommended to run PMFuzz using more than one machine, each

of which runs a fraction of workloads and design points. Before

running any command, please make sure that the python environ-

ment is correctly set up, all the dependencies are installed, and the

current working directory (CWD) is the root of the PMFuzz artifact

repository. All PMFuzz scripts also read the environment variable

JOBS to run make in parallel (with the default value of -j8). To set

this variable, export it in the shell session:

export JOBS=-j$(nproc)

Tomake sure that the script can communicate with the hosts, please

edit the variables user, hosts, dests, and ssh_cmds according to

your environment in both scripts/run-artifact-perf.py and

scripts/show-artifact-perf-results.py.

To run performance evaluation and automatically schedule fuzzing

jobs across all the servers, please run the following commands on

one of the machines:

./scripts/run-artifact-perf.py

The script will now ssh to other servers and start fuzzing processes.

When all the fuzzers have completed, the script will exit with a

message of łAll Donež. To plot the results (reproduce Figure 13),

please execute the following commands:

scripts/show-artifact-perf-results.py

python -m http.server 1010

After completing these steps, the result will be plotted as

evaluation-perf-result.png

Reproducing New Real-world Bugs. To detect real bugs that we

reported, please run the following script:

./scripts/test-real-bugs.sh [1..12]

where [1..12] corresponds to the bug IDs in Section 5.4. For exam-

ple, to detect Bug 1 in Hashmap-TX, please execute the following

command:

./scripts/test-real-bugs.sh 1

A.7 Experiment Customization

Execute PMFuzz without Script. To run PMFuzz directly, without

using any driver scripts, please run the following command:

./src/pmfuzz/pmfuzz-fuzz.py \

<Input dir> <Output dir> <Config file>

• <Input dir>: PMFuzz uses test cases from this directory as the

fuzzer’s seed input.

• <Output dir>: All the generated outputs will be placed in this

directory.

• <Config file>: A configuration file that specifies the fuzzing

target and different PMFuzz parameters.

PMFuzz Configuration. PMFuzz uses a YML-based configuration

to set different parameters for fuzzing (including the fuzzing target).

To write a custom configuration, please follow one of the existing

examples in the src/pmfuzz/configs/examples/ directory.

REFERENCES
[1] AFLplusplus. American fuzzy lop plus plus (afl++). https://github.com/

AFLplusplus/AFLplusplus/tree/2.63c.
[2] ARM. ARM architecture reference manual ARMv8, for ARMv8-A architecture

profile. https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf,
2018.

[3] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. Bztree:
A high-performance latch-free range index for non-volatile memory. Proc. VLDB
Endow., 2018.

[4] Katelin A. Bailey, Peter Hornyack, Luis Ceze, Steven D. Gribble, and Henry M.
Levy. Exploring storage class memory with key value stores. In Proceedings
of the 1st Workshop on Interactions of NVM/FLASH with Operating Systems and
Workloads (INFLOW), 2013.

[5] Jeff Barr. Now available ś Amazon EC2 high memory instances with 6, 9, and 12
TB of memory, perfect for SAP HANA. https://aws.amazon.com/blogs/aws/now-
available-amazon-ec2-high-memory-instances-with-6-9-and-12-tb-of-
memory-perfect-for-sap-hana/, 2018.

[6] Nan Boden. Available first on Google cloud: Intel Optane DC persistent mem-
ory. https://cloud.google.com/blog/topics/partners/available-first-on-google-
cloud-intel-optane-dc-persistent-memory, 2018.

[7] Michael Boelen. Linux and ASLR: kernel/randomize_va_space. https://linux-
audit.com/linux-aslr-and-kernelrandomize_va_space-setting/, 2016.

[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based
greybox fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS), 2016.

[9] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. Oreilly &
Associates Inc, 2005.

[10] Eduardo Carellan. Discover persistent memory programming errors with pmem-
check. https://software.intel.com/content/www/us/en/develop/articles/discover-
persistent-memory-programming-errors-with-pmemcheck.html, 2018.

[11] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas: Lever-
aging locks for non-volatile memory consistency. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages &
Applications (OOPSLA), 2014.

[12] Shimin Chen and Qin Jin. Persistent B+-Trees in non-volatile main memory. In
The Proceedings of the VLDB Endowment, 2015.

[13] P. Chi, W. Lee, and Y. Xie. Adapting B+-Tree for emerging nonvolatile memory-
based main memory. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 2016.

[14] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh Gupta, and Steven Swanson.
From ARIES to MARS: Transaction support for next-generation, solid-state drives.
In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP),
2013.

[15] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,
Ranjit Jhala, and Steven Swanson. NV-Heaps: Making persistent objects fast
and safe with next-generation, non-volatile memories. In Proceedings of the 16th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2011.

[16] Nachshon Cohen, David T. Aksun, and James R. Larus. Object-oriented recovery
for non-volatile memory. Proc. ACM Program. Lang., 2(OOPSLA), 2018.

[17] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin
Lee, Doug Burger, and Derrick Coetzee. Better I/O through byte-addressable,
persistent memory. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 2009.

500

https://github.com/AFLplusplus/AFLplusplus/tree/2.63c
https://github.com/AFLplusplus/AFLplusplus/tree/2.63c
https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf
https://aws.amazon.com/blogs/aws/now-available-amazon-ec2-high-memory-instances-with-6-9-and-12-tb-of-memory-perfect-for-sap-hana/
https://aws.amazon.com/blogs/aws/now-available-amazon-ec2-high-memory-instances-with-6-9-and-12-tb-of-memory-perfect-for-sap-hana/
https://aws.amazon.com/blogs/aws/now-available-amazon-ec2-high-memory-instances-with-6-9-and-12-tb-of-memory-perfect-for-sap-hana/
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://linux-audit.com/linux-aslr-and-kernelrandomize_va_space-setting/
https://linux-audit.com/linux-aslr-and-kernelrandomize_va_space-setting/
https://software.intel.com/content/www/us/en/develop/articles/discover-persistent-memory-programming-errors-with-pmemcheck.html
https://software.intel.com/content/www/us/en/develop/articles/discover-persistent-memory-programming-errors-with-pmemcheck.html

PMFuzz: Test Case Generation for Persistent Memory Programs ASPLOS ’21, April 19–23, 2021, Virtual, USA

[18] David Drysdale. Coverage-guided kernel fuzzing with syzkaller.
[19] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj

Reddy, Rajesh Sankaran, and Jeff Jackson. System software for persistent memory.
In European Conference on Computer Systems (EuroSys), 2014.

[20] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. AFL++: Com-
bining incremental steps of fuzzing research. In 14th USENIX Workshop on
Offensive Technologies (WOOT), 2020.

[21] Ellis Giles, Kshitij Doshi, and Peter Varman. Continuous checkpointing of HTM
transactions in NVM. In Proceedings of the 2017 ACM SIGPLAN International
Symposium on Memory Management (ISMM), 2017.

[22] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Machine learning
for input fuzzing. In Proceedings of the 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2017.

[23] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish Narayanasamy, Pe-
ter M. Chen, and Thomas F. Wenisch. Persistency for synchronization-free
regions. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2018.

[24] Google. OSS-Fuzz: Continuous fuzzing for open source software. https://github.
com/google/oss-fuzz.

[25] Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang, Binyu Zang, Haibing
Guan, and Haibo Chen. Pisces: A scalable and efficient persistent transactional
memory. In USENIX Annual Technical Conference (ATC), 2019.

[26] Swapnil Haria, Mark D. Hill, and Michael M. Swift. MOD: Minimally ordered
durable datastructures for persistent memory. Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020.

[27] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Keeton, and
Patrick Eugster. NVthreads: Practical persistence for multi-threaded applications.
In Proceedings of the Twelfth European Conference on Computer Systems (EuroSys),
2017.

[28] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu, and Thomas Moscibroda. Log-
structured non-volatile main memory. In USENIX Annual Technical Conference
(ATC), 2017.

[29] Intel. https://software.intel.com/content/www/us/en/develop/articles/code-
sample-enable-your-application-for-persistent-memory-with-mysql-storage-
engine.html.

[30] Intel. Intel Optane DC persistent memory. https://www.intel.com/content/www/
us/en/architecture-and-technology/optane-dc-persistent-memory.html.

[31] Intel. Key/value datastore for persistent memory. https://github.com/pmem/
pmemkv.

[32] Intel. Persistent memory programming. https://pmem.io/.
[33] intel. Pmdk examples. https://github.com/pmem/pmdk/tree/stable-1.8/src/

examples/libpmemobj.
[34] Intel. PMDKman page: libpmem. https://pmem.io/pmdk/manpages/linux/master/

libpmem/libpmem.7.html.
[35] Intel. PMDKman page: libpmem. https://pmem.io/pmdk/manpages/linux/master/

libpmemobj/libpmemobj.7.html.
[36] Intel. Pmdk mapcli. https://github.com/pmem/pmdk/blob/master/src/examples/

libpmemobj/map/mapcli.c.
[37] Intel. Btree: remove not needed snapshot (PMDK). https://github.com/

pmem/pmdk/commit/b9232407a794040102e769ed98b967d797c173fd/#diff-
c1ecccb1fea662a18db843553f5a09b00494692dc699f11c784b65d9a22535f8, 2018.

[38] Intel. Intel 64 and IA-32 architectures software developer’s man-
ual. https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-
vol-1-2abcd-3abcd.pdf, 2019.

[39] Intel. Redis. https://github.com/pmem/redis/tree/3.2-nvml, 2019.
[40] Laf Intel. Circumventing fuzzing roadblocks with compiler transfor-

mations. https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-
roadblocks-with-compiler-transformations/, 2016.

[41] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. ATOM: Atomic
durability in non-volatile memory through hardware logging. In Proceedings of
The 23rd IEEE Symposium on High Performance Computer Architecture (HPCA),
2017.

[42] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli,
and Vijay Chidambaram. SplitFS: Reducing software overhead in file systems
for persistent memory. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP), 2019.

[43] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic. Optimizing checkpoints
using NVM as virtual memory. In IEEE 27th International Symposium on Parallel
and Distributed Processing (IPDPS), 2013.

[44] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo
Kim. Finding semantic bugs in file systems with an extensible fuzzing framework.
In Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP),
2019.

[45] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Peter M. Chen,
Satish Narayanasamy, and Thomas F. Wenisch. Language-level persistency. In
Proceedings of the 44th Annual International Symposium on Computer Architecture

(ISCA), 2017.
[46] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F. Wenisch.

High-performance transactions for persistent memories. In Proceedings of the
21st International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2016.

[47] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven Pelley, Sihang
Liu, Peter M. Chen, and Thomas F. Wenisch. Delegated persist ordering. In
Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2016.

[48] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel,
and Thomas Anderson. Strata: A cross media file system. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP), 2017.

[49] Philip Lantz, Dulloor Subramanya Rao, Sanjay Kumar, Rajesh Sankaran, and Jeff
Jackson. Yat: A validation framework for persistent memory software. In USENIX
Annual Technical Conference (ATC), 2014.

[50] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the International Symposium
on Code Generation and Optimization (CGO), 2004.

[51] Lenovo. Memcached-pmem. https://github.com/lenovo/memcached-pmem, 2018.
[52] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,

and Alwen Tiu. Steelix: Program-state based binary fuzzing. In Proceedings of
the 11th Joint Meeting on Foundations of Software Engineering (FSE). Acm, 2017.

[53] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, and Jin-
glei Ren. DudeTM: Building durable transactions with decoupling for persistent
memory. In Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
2017.

[54] Qingrui Liu, Joseph Lzraelevitz, Se Kwon Lee, Michael L. Scott, Sam H. Noh,
and Changhee Jung. iDO: Compiler-directed failure atomicity for nonvolatile
memory. In Proceedings of the 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2018.

[55] S. Liu, A. Kolli, J. Ren, and S. Khan. Crash consistency in encrypted non-volatile
mainmemory systems. In 2018 IEEE International Symposium onHigh Performance
Computer Architecture (HPCA), 2018.

[56] Sihang Liu, Korakit Seemakhupt, Gennady Pekhimenko, Aasheesh Kolli, and
Samira Khan. Janus: Optimizing memory and storage support for non-volatile
memory systems. In Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), 2019.

[57] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch, Aasheesh Kolli,
and Samira Khan. Cross-failure bug detection in persistent memory programs. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2020.

[58] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Khan. PMTest:
A fast and flexible testing framework for persistent memory programs. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2019.

[59] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel. In-
termittent Computing: Challenges and Opportunities. In 2nd Summit on Advances
in Programming Languages (SNAPL), 2017.

[60] Brandon Lucia and Benjamin Ransford. A simpler, safer programming and exe-
cution model for intermittent systems. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), 2015.

[61] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2005.

[62] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and
Kimberly Keeton. An analysis of persistent memory use with WHISPER. In
Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2017.

[63] Ian Neal, B. Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon, S. Peter, and Baris
Kasikci. AGAMOTTO: How persistent is your persistent memory application?
In Proceedings of the 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2020.

[64] Tri Nguyen and David Wentzlaff. PiCL: A software-transparent, persistent
cache log for nonvolatile main memory. In 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018.

[65] Yuanjiang Ni, Jishen Zhao, Daniel Bittman, and Ethan Miller. Reducing NVM
writes with optimized shadow paging. In 10th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage), 2018.

[66] Kevin Oleary. How to detect persistent memory programming errors using
Intel Inspector - Persistence Inspector. https://software.intel.com/content/www/
us/en/develop/articles/detect-persistent-memory-programming-errors-with-
intel-inspector-persistence-inspector.html, 2018.

[67] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel
Rosenblum. Fast crash recovery in RAMCloud. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 2011.

501

https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://software.intel.com/content/www/us/en/develop/articles/code-sample-enable-your-application-for-persistent-memory-with-mysql-storage-engine.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-enable-your-application-for-persistent-memory-with-mysql-storage-engine.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-enable-your-application-for-persistent-memory-with-mysql-storage-engine.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://github.com/pmem/pmemkv
https://github.com/pmem/pmemkv
https://pmem.io/
https://github.com/pmem/pmdk/tree/stable-1.8/src/examples/libpmemobj
https://github.com/pmem/pmdk/tree/stable-1.8/src/examples/libpmemobj
https://pmem.io/pmdk/manpages/linux/master/libpmem/libpmem.7.html
https://pmem.io/pmdk/manpages/linux/master/libpmem/libpmem.7.html
https://pmem.io/pmdk/manpages/linux/master/libpmemobj/libpmemobj.7.html
https://pmem.io/pmdk/manpages/linux/master/libpmemobj/libpmemobj.7.html
https://github.com/pmem/pmdk/blob/master/src/examples/libpmemobj/map/mapcli.c
https://github.com/pmem/pmdk/blob/master/src/examples/libpmemobj/map/mapcli.c
https://github.com/pmem/pmdk/commit/b9232407a794040102e769ed98b967d797c173fd/#diff-c1ecccb1fea662a18db843553f5a09b00494692dc699f11c784b65d9a22535f8
https://github.com/pmem/pmdk/commit/b9232407a794040102e769ed98b967d797c173fd/#diff-c1ecccb1fea662a18db843553f5a09b00494692dc699f11c784b65d9a22535f8
https://github.com/pmem/pmdk/commit/b9232407a794040102e769ed98b967d797c173fd/#diff-c1ecccb1fea662a18db843553f5a09b00494692dc699f11c784b65d9a22535f8
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://github.com/pmem/redis/tree/3.2-nvml
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://github.com/lenovo/memcached-pmem
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html

ASPLOS ’21, April 19–23, 2021, Virtual, USA Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan

[68] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-Fuzz: fuzzing by program
transformation. In Proceedings of the IEEE Symposium on Security & Privacy, 2018.

[69] O. Purdila, L. A. Grijincu, and N. Tapus. LKL: The linux kernel library. In 9th
RoEduNet IEEE International Conference, 2010.

[70] Mohit Rajpal, William Blum, and Rishabh Singh. Not all bytes are equal: Neural
byte sieve for fuzzing. arXiv preprint arXiv:1711.04596, pages 1ś10, 2017.

[71] Jinglei Ren, Qingda Hu, Samira Khan, and Thomas Moscibroda. Programming
for non-volatile main memory is hard. In Proceedings of the 8th Asia-Pacific
Workshop on Systems (APSys), 2017.

[72] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, and Onur
Mutlu. ThyNVM: Enabling software-transparent crash consistency in persistent
memory systems. In Proceedings of the 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2015.

[73] S. M. Shahri, S. Armin Vakil Ghahani, and A. Kolli. (Almost) Fence-less persist
ordering. In 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020.

[74] Dongdong She, Rahul Krishna, Lu Yan, Suman Jana, and Baishakhi Ray. MTFuzz:
fuzzing with a multi-task neural network. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2020.

[75] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, and Suman
Jana. Neuzz: Efficient fuzzing with neural program learning. In Proceedings of
the IEEE Symposium on Security & Privacy (SP), 2019.

[76] Yan Shoshitaishvili. Preeny. https://github.com/zardus/preeny/.
[77] Usharani Upadhyayula. Quick start guide: Provision intel optane dc persistent

memory. https://software.intel.com/content/www/us/en/develop/articles/quick-
start-guide-configure-intel-optane-dc-persistent-memory-on-linux.html, 2019.

[78] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.
Campbell. Consistent and durable data structures for non-volatile byte-
addressable memory. In Proceedings of the 9th USENIX Conference on File and
Stroage Technologies (FAST), 2011.

[79] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight
persistent memeory. In Proceedings of the 16th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
2011.

[80] Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and Chengyu Song. Be sensitive
and collaborative: Analyzing impact of coverage metrics in greybox fuzzing. In
22nd International Symposium on Research in Attacks, Intrusions and Defenses
(RAID), 2019.

[81] William Wang and Stephan Diestelhorst. Persistent atomics for implementing
durable lock-free data structures for non-volatile memory (brief announcement).

In Proceedings of the 31st ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2019.

[82] Song Wu, Fang Zhou, Xiang Gao, Hai Jin, and Jinglei Ren. Dual-page check-
pointing: An architectural approach to efficient data persistence for in-memory
applications. ACM Trans. Archit. Code Optim., 15(4), January 2019.

[83] Xiaojian Wu and A. L. Narasimha Reddy. SCMFS: A file system for storage class
memory. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2011.

[84] Xingbo Wu, Fan Ni, Li Zhang, Yandong Wang, Yufei Ren, Michel Hack, Zili Shao,
and Song Jiang. NVMcached: An NVM-based key-value cache. In Proceedings of
the 7th ACM SIGOPS Asia-Pacific Workshop on Systems (ApSys), 2016.

[85] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. HiKV: A hybrid index key-value
store for DRAM-NVM memory systems. In USENIX Annual Technical Conference
(ATC), 2017.

[86] Jian Xu and Steven Swanson. NOVA: A log-structured file system for hybrid
volatile/non-volatile mainmemories. In Proceedings of the 14th USENIX Conference
on File and Storage Technologies (FAST), 2016.

[87] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah, Amit
Borase, Tamires Brito Da Silva, Steven Swanson, and Andy Rudoff. Nova-fortis:
A fault-tolerant non-volatile main memory file system. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP), 2017.

[88] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and Taesoo Kim.
Fuzzing file systems via two-dimensional input space exploration. 2019 IEEE
Symposium on Security and Privacy (SP), 2019.

[89] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong,
and Bingsheng He. NV-Tree: Reducing consistency cost for NVM-based single
level systems. In Proceedings of the 13th USENIX Conference on File and Storage
Technologies (FAST), 2015.

[90] M. Ye, C. Hughes, and A. Awad. Osiris: A low-cost mechanism to enable restora-
tion of secure non-volatile memories. In 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018.

[91] Michal Zalewski. American fuzzy lop. https://lcamtuf.coredump.cx/afl/.
[92] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P. Jouppi. Kiln:

Closing the performance gap between systems with and without persistence
support. In Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2013.

[93] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, 1977.

[94] K. A. Zubair and A. Awad. Anubis: Ultra-low overhead and recovery time for
secure non-volatile memories. InACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA), 2019.

502

https://github.com/zardus/preeny/
https://software.intel.com/content/www/us/en/develop/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux.html
https://software.intel.com/content/www/us/en/develop/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux.html
https://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Programming for PM Systems
	2.2 Nontrivial Bugs in PM Programming
	2.3 Requirements for Fuzzing PM Programs

	3 High-Level Design of PMFuzz
	3.1 Normal PM Image Generation
	3.2 Crash Image Generation
	3.3 Coverage for PM Path

	4 Implementation of PMFuzz
	4.1 Overview
	4.2 PM Operation Tracking
	4.3 Fuzzing Feedback Logic
	4.4 Execution Derandomization
	4.5 Detailed Fuzzing Procedure
	4.6 Test Case Management
	4.7 Optimization Strategies

	5 Evaluation
	5.1 Methodology
	5.2 PM Path Coverage
	5.3 Synthetic Bug Detection
	5.4 New Real-world Bugs Found by PMFuzz

	6 Discussion
	7 Related Works
	8 Conclusions
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-list (Meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Experiment Customization

	References

